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Logic – the language of reasoning 2.1/28

I fuzzy logic

I probabilistic logic

I logics of imperfect
information

I (numerical or logical)

I epistemic logic

Reasoning, even talking, about the world is hard:

I Nature is fuzzy: we try to classify (species, star types,
languages) but categories are not sharp.

I There’s a lot of chance in the world.
I We don’t always have all the information.
I The calculations are too hard.
I We might need to reason about what people know, or believe,

or feel.

In this course, we sweep all that under the carpet, and think only
about sharp, certain, and apparently simple statements.
How can we simplify the world?
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Earliest use of
‘information’ in OED
is in Scots in 1390:
Robert..through his
wrang informatioune
has gert skaith the
said abbot.

Informatics is ‘the study of systems that store, process, and
communicate information’.
What is information?
The OED says (among many sub-definitions):

Knowledge communicated concerning some particular fact,
subject, or event; that of which one is apprised or told;
intelligence, news.



Too much information 4.1/28

Several hundred
million emails are
sent every minute.
Five hundred hours
of video are
uploaded to Youtube
every minute.

Part of terms of use of ACX (Audible’s audiobook networking site):

Examples of the information we collect and analyze include the Internet
protocol (IP) address used to connect your computer to the Internet;
login; e-mail address; password; computer and connection information
such as browser type, version, and time zone setting, browser plug-in
types and versions, operating system, and platform; the full Uniform
Resource Locator (URL) clickstream to, through, and from our Web site,
including date and time; cookie number; products and services you viewed
or searched for; and the phone number you used to call our 800 number.
We may also use browser data such as cookies, Flash cookies (also known
as Flash Local Shared Objects), or similar data on certain parts of our
Web site for fraud prevention and other purposes. During some visits we
may use software tools such as JavaScript to measure and collect session
information, including page response times, download errors, length of
visits to certain pages, page interaction information (such as scrolling,
clicks, and mouse-overs), and methods used to browse away from the
page.
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KISS was coined by
Kelly Johnson, lead
engineer at the
Lockheed
Skunkworks, in 1960.

>
⊥

1
0

The KISS principle is that simplicity is a key design goal to build
working (and repairable) systems.
KISS is a good principle in maths as well as engineering!
To control the complexity of ‘information’ we assume:

I Each observation/sensor/question always gives an answer
I For each observation/sensor/question there are only finitely

many possible answers
I In the simplest case for each observation/sensor/question there

are only two possible answers

This is how we arrive at Binary Data.
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Universes 6.1/28

If you haven’t seen
this wonderful
visualization, check
it out:
https://htwins.
net/scale2/

Our general setting for thinking about logic and computation is a
universe:

I A universe is a finite set of things.
I We don’t care what things are – we just need names for them.

A universe could be tiny, or huge:

I {>,⊥}
I all the people in the world
I my emails to the class

We will study binary (yes/no) questions about universes.

https://htwins.net/scale2/
https://htwins.net/scale2/
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A universe of chess pieces 7.1/28

RNBQKBNR
PPPPPPPP
Ignoring the colour, there are six kinds of chess piece.
‘What kind of piece is that? ’ has 6 answers.
As in the game ‘Twenty Questions’,
we reduce the question to a series of
yes/no questions.
If you are a chess player, the
following questions will seem natural.
If you are not a chess player, what
questions seem natural to you?



Question 1 8.1/28

‘pawn’ derives from
an Old French word
for pedestrian,
foot-soldier.
(Compare Spanish
‘peón’.)

PPPPPPPP
Is it a pawn or not a pawn?

RNBQKBNR



Question 2 9.1/28

We’re cheating,
because in real chess
terminology, K is
neither major nor
minor.

NBBN
Is it minor or major?

RQKR



Question 3(1,2) 10.1/28

If it is minor,

NN
Is it a knight or a bishop?

BB

If it is major,

RR
Is it a rook or a royal?

QK
Question 4

If it’s a royal,

Q Is it a queen or a king? K
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Decision Tree 11.1/28

Binary encoding of
piece types:

p 0
B 100
N 101
R 110
Q 1110
K 1111

This is a
variable-length
encoding: 0 rather
than 0000.

not
pawn?

major?

royal?

king?

KQ

queen king
R

rook royal
knight?

NB

bishop knight

minor major
p

pawn not pawn
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Binary encoding of
piece types:

p 0
B 100
N 101
R 110
Q 1110
K 1111

This is a
variable-length
encoding: 0 rather
than 0000.

not
pawn?

major?

royal?

king?

KQ

0 1
R

0 1
knight?

NB

0 1

0 1
p

0 1
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not
pawn?

16
major?

8

royal?

4

king?

2

K

1

Q

1

R

2

knight?

4

N

2
B

2

p

8

If we identify every one of the 16 pieces by these
questions, how many questions do we ask?

It takes 1 question for a pawn, 3 for a knight,
and so on.

So 8×1+(2+2+2)×3+(1+1)×4 = 34.

This is the
total number of bits in our encoding:

8× p 0
2× B 100
2× N 101
2× R 110
1× Q 1110
1× K 1111
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From encodings to decision trees 13.1/28

Here is another encoding:

p 000
N 001
B 010
R 100
Q 110
K 111

Here each piece
needs 3
bits/questions.
What are the
questions that
produce it?

major

royal

king

KQ

R

R

bishop

Bknight

Np

How many questions to identify all pieces? You should count 44.
But our representation uses 48 bits for all pieces.
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Bits 14.1/28

Mark the
following
notational
convention (used
by computer
scientists):
log n means
log10 n

ln n means loge n
lg n means log2 n

Our chess piece encodings used 1 to 4 bits (variable), or 3 bits
(fixed) to encode 6 types.

In general, with m bits we can encode 2m values.
To encode n values, we need dlg ne bits.
How many different 3-bit encodings of 6 values are there?
Exercise: in theory, how many possible 1-hour HD digital movies are
there? Do a bit of calculation, come up with some answers, and
discuss with your colleagues in the tutorial next week.
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Logic and Language 15.1/28

‘Logic’ is from the
Greek λόγος (logos)
‘word, oration,
reasoning, reason’.
It’s short for ἡ
λογικὴ τέχνη (hē
logikē tekhnē) ‘the
art of reasoning’.

Normal human language is often ambiguous, imprecise, or verbose.
Even when people try very hard not to be – which is why lawyers
exist!
Informatics has mathematics and logic as its foundation: this both
enables and requires clear, precise, and concise communication.
We now turn to logic as a language to achieve such communication.



Propositional/Boolean Logic 16.1/28

These ‘simple’
statements contain a
lot of complexity.
What is ‘the moon’?
What does ‘round’
mean? Where is
‘here and now’?
Who is ‘I’? Which
book? But the
complexity is not
logical.

We’ve seen how to reduce the description and classification of
things to yes/no questions. Every question comes from a statement.

A proposition is a simple statement that is either true or false:

I ‘the moon is round’
I ‘it is raining (here and now)’
I ‘I like mooncakes’
I ‘that book is yellow’

We’ll use letters such as P,Q, . . . to stand for propositions.
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Combining propositions 17.1/28

We can combine propositions to form compound propositions.

I ‘and’. The ‘and’ (‘conjunction’) of P and Q is true exactly
when both P and Q are true.

There are many symbols: P ∧ Q,P & Q,P · Q and others. We
use P ∧ Q.
We can write a truth table to show how ∧ works:

Q
∧ F T

P
F F F
T F T
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We can combine propositions to form compound propositions.

I ‘or’. The ‘or’ (‘disjunction’) of P and Q is true exactly when at
least one of P and Q is true.

There are many symbols: P ∨ Q,P | Q,P + Q and others. We
use P ∨ Q.
We can write a truth table to show how ∨ works:

Q
∨ F T

P
F F T
T T T

Q
∧ F T

P
F F F
T F T

Exercise: Compare the truth tables for ∧ and ∨. What do you
observe about them?
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We can combine propositions to form compound propositions.

I ‘not’. The ‘not’ (‘negation’) of P is true exactly when P is
false.

There are many symbols: ¬P,∼P,P and others. We use ¬P .
We can write a truth table to show how ¬ works:

P
¬ F T

T F

We can build up complex propositions:

(P ∧ Q) ∨ (¬(R ∧ S))

using parentheses in the usual mathematical way.
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Combining propositions 20.1/28

Note that false
implies anything!
Later we’ll see that
this is true in proofs,
too: ex falsum
quodlibet

∧,∨,¬ are enough for all possible combinations (check for
yourself!). But we use one combination a lot.

I ‘if-then’. The ‘if-then’ (‘implication’) of P and Q is true
exactly if whenever P is true then Q is true.

There are many symbols: P → Q,P ⇒ Q,P ⊃ Q and others.
We use P → Q.
We can write a truth table to show how → works:

Q
→ F T

P
F T T
T F T

Think carefully about the first row . . .
P → Q is the same as Q ∨ ¬P .
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Venn diagrams 21.1/28

You (should) know Venn diagrams. Our boolean combinators are
just like set-theoretic combinators:

P ∧ Q P ∨ Q ¬P

P Q P Q P Q

P ∩ Q P ∪ Q P

This is not, of course, a coincidence.
When we’re being really precise, we define the meaning of P to be
‖P‖, the set {x : P(x)}, and then we define the meaning of ∧ by
‖P ∧ Q‖ = ‖P‖ ∩ ‖Q‖.
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A proposition is just true or false, on its own.
A predicate is a proposition about things:

I The moon is round
I The sun is round
I I like mooncakes

Individual things have names, and we use variables x , y , . . . to
represent arbitary things.
We represent predicates by P,Q, . . . as well, but apply them to
arguments:

I P(x): the (unary) predicate P is true of x
I Likes(x , y): the (binary) predicate Likes is true of x , y .

A special binary predicate is equality, which we write x = y .



Predicates 22.2/28

A proposition is just true or false, on its own.
A predicate is a proposition about things:

I The moon is round
I The sun is round
I I like mooncakes

Individual things have names, and we use variables x , y , . . . to
represent arbitary things.
We represent predicates by P,Q, . . . as well, but apply them to
arguments:

I P(x): the (unary) predicate P is true of x
I Likes(x , y): the (binary) predicate Likes is true of x , y .

A special binary predicate is equality, which we write x = y .



Predicates 22.3/28

A proposition is just true or false, on its own.
A predicate is a proposition about things:

I The moon is round
I The sun is round
I I like mooncakes

Individual things have names, and we use variables x , y , . . . to
represent arbitary things.
We represent predicates by P,Q, . . . as well, but apply them to
arguments:

I P(x): the (unary) predicate P is true of x
I Likes(x , y): the (binary) predicate Likes is true of x , y .

A special binary predicate is equality, which we write x = y .



First-order logic, or predicate logic 23.1/28

FOL is the language
of mathematics, and
of much other
reasoning. It was
only invented/
discovered 140 years
ago. Two millennia
earlier . . .

The usual next step beyond propositional logic is first-order logic.

This lets us make statements about ‘all’ or ‘some’ of something:

I ∀x .P(x) (‘for all x , P(x)’): P is true about x whatever x is
I ∃x .P(x) (‘there exists x such that P(x)’): there is some x of

which P is true

Now we can say much more. E.g. you may see the definition of
f : R→ R being everywhere continuous as:

∀x .∀ε > 0.∃δ > 0.∀x ′.(|x ′ − x | < δ)→ (|f (x ′)− f (x)| < ε)

First-order logic is hard! In two senses:

I long formulae are hard for humans to understand;
I we cannot work out whether arbitrary formulae are true.

So we’re going to start with something a bit easier than FOL.



First-order logic, or predicate logic 23.2/28

FOL is the language
of mathematics, and
of much other
reasoning. It was
only invented/
discovered 140 years
ago. Two millennia
earlier . . .

The usual next step beyond propositional logic is first-order logic.
This lets us make statements about ‘all’ or ‘some’ of something:

I ∀x .P(x) (‘for all x , P(x)’): P is true about x whatever x is
I ∃x .P(x) (‘there exists x such that P(x)’): there is some x of

which P is true

Now we can say much more. E.g. you may see the definition of
f : R→ R being everywhere continuous as:

∀x .∀ε > 0.∃δ > 0.∀x ′.(|x ′ − x | < δ)→ (|f (x ′)− f (x)| < ε)

First-order logic is hard! In two senses:

I long formulae are hard for humans to understand;
I we cannot work out whether arbitrary formulae are true.

So we’re going to start with something a bit easier than FOL.



First-order logic, or predicate logic 23.3/28

FOL is the language
of mathematics, and
of much other
reasoning. It was
only invented/
discovered 140 years
ago. Two millennia
earlier . . .

The usual next step beyond propositional logic is first-order logic.
This lets us make statements about ‘all’ or ‘some’ of something:

I ∀x .P(x) (‘for all x , P(x)’): P is true about x whatever x is
I ∃x .P(x) (‘there exists x such that P(x)’): there is some x of

which P is true

Now we can say much more. E.g. you may see the definition of
f : R→ R being everywhere continuous as:

∀x .∀ε > 0.∃δ > 0.∀x ′.(|x ′ − x | < δ)→ (|f (x ′)− f (x)| < ε)

First-order logic is hard! In two senses:

I long formulae are hard for humans to understand;
I we cannot work out whether arbitrary formulae are true.

So we’re going to start with something a bit easier than FOL.



First-order logic, or predicate logic 23.4/28

FOL is the language
of mathematics, and
of much other
reasoning. It was
only invented/
discovered 140 years
ago. Two millennia
earlier . . .

The usual next step beyond propositional logic is first-order logic.
This lets us make statements about ‘all’ or ‘some’ of something:

I ∀x .P(x) (‘for all x , P(x)’): P is true about x whatever x is
I ∃x .P(x) (‘there exists x such that P(x)’): there is some x of

which P is true

Now we can say much more. E.g. you may see the definition of
f : R→ R being everywhere continuous as:

∀x .∀ε > 0.∃δ > 0.∀x ′.(|x ′ − x | < δ)→ (|f (x ′)− f (x)| < ε)

First-order logic is hard! In two senses:

I long formulae are hard for humans to understand;
I we cannot work out whether arbitrary formulae are true.

So we’re going to start with something a bit easier than FOL.



First-order logic, or predicate logic 23.5/28

FOL is the language
of mathematics, and
of much other
reasoning. It was
only invented/
discovered 140 years
ago. Two millennia
earlier . . .

The usual next step beyond propositional logic is first-order logic.
This lets us make statements about ‘all’ or ‘some’ of something:

I ∀x .P(x) (‘for all x , P(x)’): P is true about x whatever x is
I ∃x .P(x) (‘there exists x such that P(x)’): there is some x of

which P is true

Now we can say much more. E.g. you may see the definition of
f : R→ R being everywhere continuous as:

∀x .∀ε > 0.∃δ > 0.∀x ′.(|x ′ − x | < δ)→ (|f (x ′)− f (x)| < ε)

First-order logic is hard! In two senses:

I long formulae are hard for humans to understand;
I we cannot work out whether arbitrary formulae are true.

So we’re going to start with something a bit easier than FOL.



A Small Universe



A universe of coloured shapes 25.1/28



Some statements about the universe 26.1/28

Every red triangle is small

3

Every small triangle is red

7

Some big triangle is green

?

Some small disc is red

?

No red thing is blue

?
Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 26.2/28

Every red triangle is small 3

Every small triangle is red

7

Some big triangle is green

?

Some small disc is red

?

No red thing is blue

?
Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 26.3/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green

?

Some small disc is red

?

No red thing is blue

?
Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 26.4/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Some statements about the universe 26.5/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

Categorical propositions say:
(Every/some/no) A is (not) B.

Aristotle
384–322 B.C.



Checking categorical propositions 27.1/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 27.2/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 27.3/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 27.4/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 27.5/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green ?
Some small disc is red ?
No red thing is blue ?

red

triangle small

green

disc
blue



Checking categorical propositions 27.6/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red ?
No red thing is blue ?

red

triangle small

green

disc
blue



Checking categorical propositions 27.7/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red ?
No red thing is blue ?

red

triangle

small

green

disc

blue



Checking categorical propositions 27.8/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red 7

No red thing is blue ?

red

triangle

small

green

disc

blue



Checking categorical propositions 27.9/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red 7

No red thing is blue ?

red

triangle small

green
disc

blue



Checking categorical propositions 27.10/28

Every red triangle is small 3

Every small triangle is red 7

Some big triangle is green 3

Some small disc is red 7

No red thing is blue 3

red

triangle small

green
disc

blue



Categorical propositions as predicate logic 28.1/28

Categorical propositions are a very restricted form of predicate logic:

I Every red thing is small
∀x .isRed(x)→ isSmall(x)

I Every small triangle is red
∀x .(isSmall(x) ∧ isTriangle(x))→ isRed(x)

I Some small disc is red
∃x .(isSmall(x) ∧ isDisc(x)) ∧ isRed(x)

Can you write the general form of a categorical proposition?



Categorical propositions as predicate logic 28.2/28

Categorical propositions are a very restricted form of predicate logic:

I Every red thing is small
∀x .isRed(x)→ isSmall(x)

I Every small triangle is red
∀x .(isSmall(x) ∧ isTriangle(x))→ isRed(x)

I Some small disc is red
∃x .(isSmall(x) ∧ isDisc(x)) ∧ isRed(x)

Can you write the general form of a categorical proposition?


