
Gerhard Gentzen
1909–1945

Kurt Gödel
1906–1978

Informatics 1 – Introduction to Computation
Computation and Logic

Julian Bradfield

Sequent Calculus, Completeness, and Incompleteness

Abandoning Meaning 2.1/13

Recall that we been working with �, which is semantic – it talks
about meaning of formulae in universes. We have also been rather
sloppy with notation! To be more precise, we should have said:

I In universe X,

Γ �X ∆ iff ∀x , y , z ,
∧
Γ (x , y , z , . . .)→

∨
∆(x , y , z , . . .)

I Γ � ∆ iff Γ �X ∆ in every universe X.

As logics became harder, it made sense to separate ‘meaning’ from
‘proof’.
‘Proof theory’ looks at logical proof just with the syntax – we
formulate rules of reasoning we believe to be correct.
Then we use ‘model theory’ to connect proofs to meaning, and we
prove (by mathematics) that if we ‘prove’ a formula valid, then it is
semantically valid too.

Abandoning Meaning 2.2/13

Recall that we been working with �, which is semantic – it talks
about meaning of formulae in universes. We have also been rather
sloppy with notation! To be more precise, we should have said:

I In universe X,

Γ �X ∆ iff ∀x , y , z ,
∧
Γ (x , y , z , . . .)→

∨
∆(x , y , z , . . .)

I Γ � ∆ iff Γ �X ∆ in every universe X.

As logics became harder, it made sense to separate ‘meaning’ from
‘proof’.

‘Proof theory’ looks at logical proof just with the syntax – we
formulate rules of reasoning we believe to be correct.
Then we use ‘model theory’ to connect proofs to meaning, and we
prove (by mathematics) that if we ‘prove’ a formula valid, then it is
semantically valid too.

Abandoning Meaning 2.3/13

Recall that we been working with �, which is semantic – it talks
about meaning of formulae in universes. We have also been rather
sloppy with notation! To be more precise, we should have said:

I In universe X,

Γ �X ∆ iff ∀x , y , z ,
∧
Γ (x , y , z , . . .)→

∨
∆(x , y , z , . . .)

I Γ � ∆ iff Γ �X ∆ in every universe X.

As logics became harder, it made sense to separate ‘meaning’ from
‘proof’.
‘Proof theory’ looks at logical proof just with the syntax – we
formulate rules of reasoning we believe to be correct.

Then we use ‘model theory’ to connect proofs to meaning, and we
prove (by mathematics) that if we ‘prove’ a formula valid, then it is
semantically valid too.

Abandoning Meaning 2.4/13

Recall that we been working with �, which is semantic – it talks
about meaning of formulae in universes. We have also been rather
sloppy with notation! To be more precise, we should have said:

I In universe X,

Γ �X ∆ iff ∀x , y , z ,
∧
Γ (x , y , z , . . .)→

∨
∆(x , y , z , . . .)

I Γ � ∆ iff Γ �X ∆ in every universe X.

As logics became harder, it made sense to separate ‘meaning’ from
‘proof’.
‘Proof theory’ looks at logical proof just with the syntax – we
formulate rules of reasoning we believe to be correct.
Then we use ‘model theory’ to connect proofs to meaning, and we
prove (by mathematics) that if we ‘prove’ a formula valid, then it is
semantically valid too.

Syntactic entailment 3.1/13

I
Γ, a ` a, ∆

Γ ` a, ∆
¬L

Γ,¬a ` ∆
Γ, a ` ∆

¬R
Γ ` ¬a, ∆
Γ, a, b ` ∆

∧L
Γ, a ∧ b ` ∆

Γ ` a, ∆ Γ ` b, ∆
∧R

Γ ` a ∧ b, ∆

Γ, a ` ∆ Γ, b ` ∆
∨L

Γ, a ∨ b ` ∆
Γ ` a, b, ∆

∨R
Γ ` a ∨ b, ∆

We introduce the symbol ` for syntactic entailment.
Now the sequent calculus is no longer statements about how �
works, it’s just a bunch of stipulated rules about how ` is defined to
work.

We will ultimately want to prove that Γ ` ∆ iff Γ � ∆ (but we
won’t).
For propositional logic, we have seen soundness (Γ ` ∆ =⇒ Γ � ∆)
as we invented the rules.
We saw completeness (Γ � ∆ =⇒ Γ ` ∆) intuitively: we can
mechanically build a proof of any valid sequent. It is possible to
prove it formally.

Syntactic entailment 3.2/13

I
Γ, a ` a, ∆

Γ ` a, ∆
¬L

Γ,¬a ` ∆
Γ, a ` ∆

¬R
Γ ` ¬a, ∆
Γ, a, b ` ∆

∧L
Γ, a ∧ b ` ∆

Γ ` a, ∆ Γ ` b, ∆
∧R

Γ ` a ∧ b, ∆

Γ, a ` ∆ Γ, b ` ∆
∨L

Γ, a ∨ b ` ∆
Γ ` a, b, ∆

∨R
Γ ` a ∨ b, ∆

We introduce the symbol ` for syntactic entailment.
Now the sequent calculus is no longer statements about how �
works, it’s just a bunch of stipulated rules about how ` is defined to
work.
We will ultimately want to prove that Γ ` ∆ iff Γ � ∆ (but we
won’t).

For propositional logic, we have seen soundness (Γ ` ∆ =⇒ Γ � ∆)
as we invented the rules.
We saw completeness (Γ � ∆ =⇒ Γ ` ∆) intuitively: we can
mechanically build a proof of any valid sequent. It is possible to
prove it formally.

Syntactic entailment 3.3/13

I
Γ, a ` a, ∆

Γ ` a, ∆
¬L

Γ,¬a ` ∆
Γ, a ` ∆

¬R
Γ ` ¬a, ∆
Γ, a, b ` ∆

∧L
Γ, a ∧ b ` ∆

Γ ` a, ∆ Γ ` b, ∆
∧R

Γ ` a ∧ b, ∆

Γ, a ` ∆ Γ, b ` ∆
∨L

Γ, a ∨ b ` ∆
Γ ` a, b, ∆

∨R
Γ ` a ∨ b, ∆

We introduce the symbol ` for syntactic entailment.
Now the sequent calculus is no longer statements about how �
works, it’s just a bunch of stipulated rules about how ` is defined to
work.
We will ultimately want to prove that Γ ` ∆ iff Γ � ∆ (but we
won’t).
For propositional logic, we have seen soundness (Γ ` ∆ =⇒ Γ � ∆)
as we invented the rules.

We saw completeness (Γ � ∆ =⇒ Γ ` ∆) intuitively: we can
mechanically build a proof of any valid sequent. It is possible to
prove it formally.

Syntactic entailment 3.4/13

I
Γ, a ` a, ∆

Γ ` a, ∆
¬L

Γ,¬a ` ∆
Γ, a ` ∆

¬R
Γ ` ¬a, ∆
Γ, a, b ` ∆

∧L
Γ, a ∧ b ` ∆

Γ ` a, ∆ Γ ` b, ∆
∧R

Γ ` a ∧ b, ∆

Γ, a ` ∆ Γ, b ` ∆
∨L

Γ, a ∨ b ` ∆
Γ ` a, b, ∆

∨R
Γ ` a ∨ b, ∆

We introduce the symbol ` for syntactic entailment.
Now the sequent calculus is no longer statements about how �
works, it’s just a bunch of stipulated rules about how ` is defined to
work.
We will ultimately want to prove that Γ ` ∆ iff Γ � ∆ (but we
won’t).
For propositional logic, we have seen soundness (Γ ` ∆ =⇒ Γ � ∆)
as we invented the rules.
We saw completeness (Γ � ∆ =⇒ Γ ` ∆) intuitively: we can
mechanically build a proof of any valid sequent. It is possible to
prove it formally.

Rules for quantifiers (∀) 4.1/13

Let’s think about ` ∀x .φ (where the variable x occurs in φ). How
can we make a rule that doesn’t talk about universes (doesn’t know
what x means), and yet works for all possible universes?

If we can prove ` φ whatever x is, knowing nothing about it, then
surely we know ` ∀x .φ in all possible universes.

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆
where y does not occur in Γ, φ,∆ and φ[y/x] means the result of
substituting y for x in φ.

Rules for quantifiers (∀) 4.2/13

Let’s think about ` ∀x .φ (where the variable x occurs in φ). How
can we make a rule that doesn’t talk about universes (doesn’t know
what x means), and yet works for all possible universes?
If we can prove ` φ whatever x is, knowing nothing about it, then
surely we know ` ∀x .φ in all possible universes.

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆
where y does not occur in Γ, φ,∆ and φ[y/x] means the result of
substituting y for x in φ.

Rules for quantifiers (∀) 4.3/13

Let’s think about ` ∀x .φ (where the variable x occurs in φ). How
can we make a rule that doesn’t talk about universes (doesn’t know
what x means), and yet works for all possible universes?
If we can prove ` φ whatever x is, knowing nothing about it, then
surely we know ` ∀x .φ in all possible universes.

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆
where y does not occur in Γ, φ,∆ and φ[y/x] means the result of
substituting y for x in φ.

Rules for quantifiers (∃) 5.1/13

The restriction on t
is a bit tighter than
necessary; really, it’s
that t has no free
variable that would
become bound when
t is substituted for x

A universe X is really
a set X of objects,
plus interpretations
over X for the
predicate and
function symbols of
the logic.

What about ` ∃x .φ ?

To prove ` ∃x .φ, we need to exhibit a suitable x . But we have to
be able to do this in any universe!

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆
where t is a term that contains no variable that is quantified inside
φ.
A term is a variable or functions applied to variables, such as x or
y + dbl(z). We haven’t discussed this, but the language of logic
usually includes function symbols, as in Haskell, as well as predicate
symbols. (Plain logic does not have types, though.)
Where can this term come from? Are there any formulae such that
` ∃x .φ ?
t will come from elsewhere in the proof, or from an assumption in Γ .

Rules for quantifiers (∃) 5.2/13

The restriction on t
is a bit tighter than
necessary; really, it’s
that t has no free
variable that would
become bound when
t is substituted for x

A universe X is really
a set X of objects,
plus interpretations
over X for the
predicate and
function symbols of
the logic.

What about ` ∃x .φ ?
To prove ` ∃x .φ, we need to exhibit a suitable x . But we have to
be able to do this in any universe!

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆
where t is a term that contains no variable that is quantified inside
φ.
A term is a variable or functions applied to variables, such as x or
y + dbl(z). We haven’t discussed this, but the language of logic
usually includes function symbols, as in Haskell, as well as predicate
symbols. (Plain logic does not have types, though.)
Where can this term come from? Are there any formulae such that
` ∃x .φ ?
t will come from elsewhere in the proof, or from an assumption in Γ .

Rules for quantifiers (∃) 5.3/13

The restriction on t
is a bit tighter than
necessary; really, it’s
that t has no free
variable that would
become bound when
t is substituted for x

A universe X is really
a set X of objects,
plus interpretations
over X for the
predicate and
function symbols of
the logic.

What about ` ∃x .φ ?
To prove ` ∃x .φ, we need to exhibit a suitable x . But we have to
be able to do this in any universe!

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆
where t is a term that contains no variable that is quantified inside
φ.

A term is a variable or functions applied to variables, such as x or
y + dbl(z). We haven’t discussed this, but the language of logic
usually includes function symbols, as in Haskell, as well as predicate
symbols. (Plain logic does not have types, though.)
Where can this term come from? Are there any formulae such that
` ∃x .φ ?
t will come from elsewhere in the proof, or from an assumption in Γ .

Rules for quantifiers (∃) 5.4/13

The restriction on t
is a bit tighter than
necessary; really, it’s
that t has no free
variable that would
become bound when
t is substituted for x

A universe X is really
a set X of objects,
plus interpretations
over X for the
predicate and
function symbols of
the logic.

What about ` ∃x .φ ?
To prove ` ∃x .φ, we need to exhibit a suitable x . But we have to
be able to do this in any universe!

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆
where t is a term that contains no variable that is quantified inside
φ.
A term is a variable or functions applied to variables, such as x or
y + dbl(z). We haven’t discussed this, but the language of logic
usually includes function symbols, as in Haskell, as well as predicate
symbols. (Plain logic does not have types, though.)

Where can this term come from? Are there any formulae such that
` ∃x .φ ?
t will come from elsewhere in the proof, or from an assumption in Γ .

Rules for quantifiers (∃) 5.5/13

The restriction on t
is a bit tighter than
necessary; really, it’s
that t has no free
variable that would
become bound when
t is substituted for x

A universe X is really
a set X of objects,
plus interpretations
over X for the
predicate and
function symbols of
the logic.

What about ` ∃x .φ ?
To prove ` ∃x .φ, we need to exhibit a suitable x . But we have to
be able to do this in any universe!

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆
where t is a term that contains no variable that is quantified inside
φ.
A term is a variable or functions applied to variables, such as x or
y + dbl(z). We haven’t discussed this, but the language of logic
usually includes function symbols, as in Haskell, as well as predicate
symbols. (Plain logic does not have types, though.)
Where can this term come from? Are there any formulae such that
` ∃x .φ ?

t will come from elsewhere in the proof, or from an assumption in Γ .

Rules for quantifiers (∃) 5.6/13

The restriction on t
is a bit tighter than
necessary; really, it’s
that t has no free
variable that would
become bound when
t is substituted for x

A universe X is really
a set X of objects,
plus interpretations
over X for the
predicate and
function symbols of
the logic.

What about ` ∃x .φ ?
To prove ` ∃x .φ, we need to exhibit a suitable x . But we have to
be able to do this in any universe!

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆
where t is a term that contains no variable that is quantified inside
φ.
A term is a variable or functions applied to variables, such as x or
y + dbl(z). We haven’t discussed this, but the language of logic
usually includes function symbols, as in Haskell, as well as predicate
symbols. (Plain logic does not have types, though.)
Where can this term come from? Are there any formulae such that
` ∃x .φ ?
t will come from elsewhere in the proof, or from an assumption in Γ .

Rules for quantifiers: left side 6.1/13

We know that swapping sides is negation, and exists is the dual of
forall. So the left side rules are just the duals of the right side rules:

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆
Γ, φ[y/x] ` ∆

∃L
Γ,∃x .φ ` ∆

with the same restrictions on y and t.

Example 7.1/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)

First, expand out the→ to get: ∃x .p(x),∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)

I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y),∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x),∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.2/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)

I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y),∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x),∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.3/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)

I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y),∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.4/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)

I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.5/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)

I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.6/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)

I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.7/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)

I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.8/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)
I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.9/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I

p(y) ` q(y), p(y)
¬L

p(y),¬p(y) ` q(y)
I

p(y), q(y) ` q(y)
∨ L

p(y),¬p(y) ∨ q(y) ` q(y)
∃R

p(y),¬p(y) ∨ q(y) ` ∃x .q(x)
∀L

p(y), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)
∃L

∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Example 7.10/13

Γ ` φ[y/x], ∆
∀R

Γ ` ∀x .φ,∆

Γ ` φ[t/x], ∆
∃R

Γ ` ∃x .φ,∆

Γ, φ[t/x] ` ∆
∀L

Γ,∀x .φ ` ∆

Γ, φ[y/x] ` ∆
∃L

Γ,∃x .φ ` ∆

We should be able to prove ∃x .p(x), ∀x .p(x)→ q(x) ` ∃x .q(x)
(Exercise: rewrite this in syllogism terms.)
First, expand out the→ to get: ∃x .p(x), ∀x .¬p(x)∨q(x) ` ∃x .q(x)

I
p(y) ` q(y), p(y)

¬L
p(y),¬p(y) ` q(y)

I
p(y), q(y) ` q(y)

∨ L
p(y),¬p(y) ∨ q(y) ` q(y)

∃R
p(y),¬p(y) ∨ q(y) ` ∃x .q(x)

∀L
p(y), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

∃L
∃x .p(x), ∀x .¬p(x) ∨ q(x) ` ∃x .q(x)

Completeness 8.1/13

We have shown (informally, but it can be done formally) as we
invented rules, that

Γ ` ∆ =⇒ Γ � ∆

Gödel’s Completeness Theorem says that

Γ � ∆ =⇒ Γ ` ∆
If something is universally true, we can prove it in sequent calculus.
The proof of this theorem, even in modern notation, is quite long
and detailed, although not difficult in a deep way.

Completeness 8.2/13

We have shown (informally, but it can be done formally) as we
invented rules, that

Γ ` ∆ =⇒ Γ � ∆

Gödel’s Completeness Theorem says that

Γ � ∆ =⇒ Γ ` ∆
If something is universally true, we can prove it in sequent calculus.

The proof of this theorem, even in modern notation, is quite long
and detailed, although not difficult in a deep way.

Completeness 8.3/13

We have shown (informally, but it can be done formally) as we
invented rules, that

Γ ` ∆ =⇒ Γ � ∆

Gödel’s Completeness Theorem says that

Γ � ∆ =⇒ Γ ` ∆
If something is universally true, we can prove it in sequent calculus.
The proof of this theorem, even in modern notation, is quite long
and detailed, although not difficult in a deep way.

Death by 101000 cuts 9.1/13

Hauptsatz is simply
German for ‘main
theorem’.

The standard sequent calculus includes the rule:
Γ ` φ,∆ Γ ′, φ `, ∆′

Cut
Γ, Γ ′ ` ∆,∆′

that is, if one sequent needs assumption φ, and another sequent
shows φ, then you can ‘cut out’ φ. Obviously sound (right?), but
why do we want it?

Gentzen’s Hauptsatz shows that
If a sequent can be proved using Cut, it can also be proved
without using Cut.

However, the cut-free proof may be longer.
There are statements which can be proved in one page with Cut,
but whose cut-free proof cannot be computed by our fastest
computers within the lifetime of the universe.
(Actually, it can be much worse than that. See the final ‘fun lecture’
of the course for an idea of what a really big proof might be.)

Death by 101000 cuts 9.2/13

Hauptsatz is simply
German for ‘main
theorem’.

The standard sequent calculus includes the rule:
Γ ` φ,∆ Γ ′, φ `, ∆′

Cut
Γ, Γ ′ ` ∆,∆′

that is, if one sequent needs assumption φ, and another sequent
shows φ, then you can ‘cut out’ φ. Obviously sound (right?), but
why do we want it?
Gentzen’s Hauptsatz shows that

If a sequent can be proved using Cut, it can also be proved
without using Cut.

However, the cut-free proof may be longer.
There are statements which can be proved in one page with Cut,
but whose cut-free proof cannot be computed by our fastest
computers within the lifetime of the universe.
(Actually, it can be much worse than that. See the final ‘fun lecture’
of the course for an idea of what a really big proof might be.)

Death by 101000 cuts 9.3/13

Hauptsatz is simply
German for ‘main
theorem’.

The standard sequent calculus includes the rule:
Γ ` φ,∆ Γ ′, φ `, ∆′

Cut
Γ, Γ ′ ` ∆,∆′

that is, if one sequent needs assumption φ, and another sequent
shows φ, then you can ‘cut out’ φ. Obviously sound (right?), but
why do we want it?
Gentzen’s Hauptsatz shows that

If a sequent can be proved using Cut, it can also be proved
without using Cut.

However, the cut-free proof may be longer.

There are statements which can be proved in one page with Cut,
but whose cut-free proof cannot be computed by our fastest
computers within the lifetime of the universe.
(Actually, it can be much worse than that. See the final ‘fun lecture’
of the course for an idea of what a really big proof might be.)

Death by 101000 cuts 9.4/13

Hauptsatz is simply
German for ‘main
theorem’.

The standard sequent calculus includes the rule:
Γ ` φ,∆ Γ ′, φ `, ∆′

Cut
Γ, Γ ′ ` ∆,∆′

that is, if one sequent needs assumption φ, and another sequent
shows φ, then you can ‘cut out’ φ. Obviously sound (right?), but
why do we want it?
Gentzen’s Hauptsatz shows that

If a sequent can be proved using Cut, it can also be proved
without using Cut.

However, the cut-free proof may be longer.
There are statements which can be proved in one page with Cut,
but whose cut-free proof cannot be computed by our fastest
computers within the lifetime of the universe.

(Actually, it can be much worse than that. See the final ‘fun lecture’
of the course for an idea of what a really big proof might be.)

Death by 101000 cuts 9.5/13

Hauptsatz is simply
German for ‘main
theorem’.

The standard sequent calculus includes the rule:
Γ ` φ,∆ Γ ′, φ `, ∆′

Cut
Γ, Γ ′ ` ∆,∆′

that is, if one sequent needs assumption φ, and another sequent
shows φ, then you can ‘cut out’ φ. Obviously sound (right?), but
why do we want it?
Gentzen’s Hauptsatz shows that

If a sequent can be proved using Cut, it can also be proved
without using Cut.

However, the cut-free proof may be longer.
There are statements which can be proved in one page with Cut,
but whose cut-free proof cannot be computed by our fastest
computers within the lifetime of the universe.
(Actually, it can be much worse than that. See the final ‘fun lecture’
of the course for an idea of what a really big proof might be.)

Incompleteness 10.1/13

The Incompleteness
Theorem, and the
closely connected
Undecidability
Theorems of Church
and Turing,
shattered the hope
expressed by David
Hilbert in 1901 that
maths might one day
be reduced to
mechanical
procedures.

We’ve seen that if a sequent is universally true, we can prove it.

When we think about specific universes, things change . . .
Suppose that N is a set of assumptions which describe the usual
properties of arithmetic: 0 exists, 1 exists, + and × exist with the
usual properties. Then N ` φ means that φ is a provable statement
about arithmetic.
Gödel’s First Incompleteness Theorem says that there is a statement
φN about arithmetic which is true, but that N 0 φN .
How can this be? If N describes arithmetic, and φN is true of
arithmetic, isn’t N � φN universally true, so by completeness
N ` φN ?
The solution to this paradox is that first-order logic is not strong
enough to fully describe the natural numbers. If N satisfies N, then
there are other universes satisfying N, and in some φN is false.

Incompleteness 10.2/13

The Incompleteness
Theorem, and the
closely connected
Undecidability
Theorems of Church
and Turing,
shattered the hope
expressed by David
Hilbert in 1901 that
maths might one day
be reduced to
mechanical
procedures.

We’ve seen that if a sequent is universally true, we can prove it.
When we think about specific universes, things change . . .

Suppose that N is a set of assumptions which describe the usual
properties of arithmetic: 0 exists, 1 exists, + and × exist with the
usual properties. Then N ` φ means that φ is a provable statement
about arithmetic.
Gödel’s First Incompleteness Theorem says that there is a statement
φN about arithmetic which is true, but that N 0 φN .
How can this be? If N describes arithmetic, and φN is true of
arithmetic, isn’t N � φN universally true, so by completeness
N ` φN ?
The solution to this paradox is that first-order logic is not strong
enough to fully describe the natural numbers. If N satisfies N, then
there are other universes satisfying N, and in some φN is false.

Incompleteness 10.3/13

The Incompleteness
Theorem, and the
closely connected
Undecidability
Theorems of Church
and Turing,
shattered the hope
expressed by David
Hilbert in 1901 that
maths might one day
be reduced to
mechanical
procedures.

We’ve seen that if a sequent is universally true, we can prove it.
When we think about specific universes, things change . . .
Suppose that N is a set of assumptions which describe the usual
properties of arithmetic: 0 exists, 1 exists, + and × exist with the
usual properties. Then N ` φ means that φ is a provable statement
about arithmetic.

Gödel’s First Incompleteness Theorem says that there is a statement
φN about arithmetic which is true, but that N 0 φN .
How can this be? If N describes arithmetic, and φN is true of
arithmetic, isn’t N � φN universally true, so by completeness
N ` φN ?
The solution to this paradox is that first-order logic is not strong
enough to fully describe the natural numbers. If N satisfies N, then
there are other universes satisfying N, and in some φN is false.

Incompleteness 10.4/13

The Incompleteness
Theorem, and the
closely connected
Undecidability
Theorems of Church
and Turing,
shattered the hope
expressed by David
Hilbert in 1901 that
maths might one day
be reduced to
mechanical
procedures.

We’ve seen that if a sequent is universally true, we can prove it.
When we think about specific universes, things change . . .
Suppose that N is a set of assumptions which describe the usual
properties of arithmetic: 0 exists, 1 exists, + and × exist with the
usual properties. Then N ` φ means that φ is a provable statement
about arithmetic.
Gödel’s First Incompleteness Theorem says that there is a statement
φN about arithmetic which is true, but that N 0 φN .

How can this be? If N describes arithmetic, and φN is true of
arithmetic, isn’t N � φN universally true, so by completeness
N ` φN ?
The solution to this paradox is that first-order logic is not strong
enough to fully describe the natural numbers. If N satisfies N, then
there are other universes satisfying N, and in some φN is false.

Incompleteness 10.5/13

The Incompleteness
Theorem, and the
closely connected
Undecidability
Theorems of Church
and Turing,
shattered the hope
expressed by David
Hilbert in 1901 that
maths might one day
be reduced to
mechanical
procedures.

We’ve seen that if a sequent is universally true, we can prove it.
When we think about specific universes, things change . . .
Suppose that N is a set of assumptions which describe the usual
properties of arithmetic: 0 exists, 1 exists, + and × exist with the
usual properties. Then N ` φ means that φ is a provable statement
about arithmetic.
Gödel’s First Incompleteness Theorem says that there is a statement
φN about arithmetic which is true, but that N 0 φN .
How can this be? If N describes arithmetic, and φN is true of
arithmetic, isn’t N � φN universally true, so by completeness
N ` φN ?

The solution to this paradox is that first-order logic is not strong
enough to fully describe the natural numbers. If N satisfies N, then
there are other universes satisfying N, and in some φN is false.

Incompleteness 10.6/13

The Incompleteness
Theorem, and the
closely connected
Undecidability
Theorems of Church
and Turing,
shattered the hope
expressed by David
Hilbert in 1901 that
maths might one day
be reduced to
mechanical
procedures.

We’ve seen that if a sequent is universally true, we can prove it.
When we think about specific universes, things change . . .
Suppose that N is a set of assumptions which describe the usual
properties of arithmetic: 0 exists, 1 exists, + and × exist with the
usual properties. Then N ` φ means that φ is a provable statement
about arithmetic.
Gödel’s First Incompleteness Theorem says that there is a statement
φN about arithmetic which is true, but that N 0 φN .
How can this be? If N describes arithmetic, and φN is true of
arithmetic, isn’t N � φN universally true, so by completeness
N ` φN ?
The solution to this paradox is that first-order logic is not strong
enough to fully describe the natural numbers. If N satisfies N, then
there are other universes satisfying N, and in some φN is false.

Proving Incompleteness 11.1/13

In lecture 1, we talked about encoding everything into numbers.
That’s the key.

I We can encode FOL formulae φ into numbers pφq.
I We can encode FOL proofs π into numbers pπq.
I We can write a FO arithmetic formula Pf (x , y) that is true iff

x = pφq, y = pπq, and π is a proof of φ.
I Now we can write a FO sentence that essentially says ‘I cannot

be proved’

I If it’s true, then it’s not provable.
I If it’s false, then it’s provable, contradicting soundness.

Proving Incompleteness 11.2/13

In lecture 1, we talked about encoding everything into numbers.
That’s the key.

I We can encode FOL formulae φ into numbers pφq.

I We can encode FOL proofs π into numbers pπq.
I We can write a FO arithmetic formula Pf (x , y) that is true iff

x = pφq, y = pπq, and π is a proof of φ.
I Now we can write a FO sentence that essentially says ‘I cannot

be proved’

I If it’s true, then it’s not provable.
I If it’s false, then it’s provable, contradicting soundness.

Proving Incompleteness 11.3/13

In lecture 1, we talked about encoding everything into numbers.
That’s the key.

I We can encode FOL formulae φ into numbers pφq.
I We can encode FOL proofs π into numbers pπq.

I We can write a FO arithmetic formula Pf (x , y) that is true iff
x = pφq, y = pπq, and π is a proof of φ.

I Now we can write a FO sentence that essentially says ‘I cannot
be proved’

I If it’s true, then it’s not provable.
I If it’s false, then it’s provable, contradicting soundness.

Proving Incompleteness 11.4/13

In lecture 1, we talked about encoding everything into numbers.
That’s the key.

I We can encode FOL formulae φ into numbers pφq.
I We can encode FOL proofs π into numbers pπq.
I We can write a FO arithmetic formula Pf (x , y) that is true iff

x = pφq, y = pπq, and π is a proof of φ.

I Now we can write a FO sentence that essentially says ‘I cannot
be proved’

I If it’s true, then it’s not provable.
I If it’s false, then it’s provable, contradicting soundness.

Proving Incompleteness 11.5/13

In lecture 1, we talked about encoding everything into numbers.
That’s the key.

I We can encode FOL formulae φ into numbers pφq.
I We can encode FOL proofs π into numbers pπq.
I We can write a FO arithmetic formula Pf (x , y) that is true iff

x = pφq, y = pπq, and π is a proof of φ.
I Now we can write a FO sentence that essentially says ‘I cannot

be proved’

I If it’s true, then it’s not provable.
I If it’s false, then it’s provable, contradicting soundness.

Proving Incompleteness 11.6/13

In lecture 1, we talked about encoding everything into numbers.
That’s the key.

I We can encode FOL formulae φ into numbers pφq.
I We can encode FOL proofs π into numbers pπq.
I We can write a FO arithmetic formula Pf (x , y) that is true iff

x = pφq, y = pπq, and π is a proof of φ.
I Now we can write a FO sentence that essentially says ‘I cannot

be proved’
I If it’s true, then it’s not provable.

I If it’s false, then it’s provable, contradicting soundness.

Proving Incompleteness 11.7/13

In lecture 1, we talked about encoding everything into numbers.
That’s the key.

I We can encode FOL formulae φ into numbers pφq.
I We can encode FOL proofs π into numbers pπq.
I We can write a FO arithmetic formula Pf (x , y) that is true iff

x = pφq, y = pπq, and π is a proof of φ.
I Now we can write a FO sentence that essentially says ‘I cannot

be proved’
I If it’s true, then it’s not provable.
I If it’s false, then it’s provable, contradicting soundness.

A little more detail 12.1/13

For a fully detailed
proof, get Douglas
R. Hofstadter,
Gödel, Escher, Bach:
An Eternal Golden
Braid

I Put Notpr = ¬∃y .Pf (x , y), so Notpr says ‘φ is not provable,
where x = pφq’.

I It can be shown that for any one-variable formula φ(x), there is
a sentence Diag(φ) such that

Diag(φ)↔ φ(pDiag(φ)q)

is provable: Diag(φ) is true iff φ applied to the code of
Diag(φ) is true.

I Now consider γ = Diag(Notpr). What does it tell us?
I ‘ “Not provable” applied to γ is true iff γ is true’

I If γ is true, then it’s not provable.
I If γ is false, then it’s provable, contradicting soundness.

A little more detail 12.2/13

For a fully detailed
proof, get Douglas
R. Hofstadter,
Gödel, Escher, Bach:
An Eternal Golden
Braid

I Put Notpr = ¬∃y .Pf (x , y), so Notpr says ‘φ is not provable,
where x = pφq’.

I It can be shown that for any one-variable formula φ(x), there is
a sentence Diag(φ) such that

Diag(φ)↔ φ(pDiag(φ)q)

is provable: Diag(φ) is true iff φ applied to the code of
Diag(φ) is true.

I Now consider γ = Diag(Notpr). What does it tell us?
I ‘ “Not provable” applied to γ is true iff γ is true’

I If γ is true, then it’s not provable.
I If γ is false, then it’s provable, contradicting soundness.

A little more detail 12.3/13

For a fully detailed
proof, get Douglas
R. Hofstadter,
Gödel, Escher, Bach:
An Eternal Golden
Braid

I Put Notpr = ¬∃y .Pf (x , y), so Notpr says ‘φ is not provable,
where x = pφq’.

I It can be shown that for any one-variable formula φ(x), there is
a sentence Diag(φ) such that

Diag(φ)↔ φ(pDiag(φ)q)

is provable: Diag(φ) is true iff φ applied to the code of
Diag(φ) is true.

I Now consider γ = Diag(Notpr). What does it tell us?

I ‘ “Not provable” applied to γ is true iff γ is true’

I If γ is true, then it’s not provable.
I If γ is false, then it’s provable, contradicting soundness.

A little more detail 12.4/13

For a fully detailed
proof, get Douglas
R. Hofstadter,
Gödel, Escher, Bach:
An Eternal Golden
Braid

I Put Notpr = ¬∃y .Pf (x , y), so Notpr says ‘φ is not provable,
where x = pφq’.

I It can be shown that for any one-variable formula φ(x), there is
a sentence Diag(φ) such that

Diag(φ)↔ φ(pDiag(φ)q)

is provable: Diag(φ) is true iff φ applied to the code of
Diag(φ) is true.

I Now consider γ = Diag(Notpr). What does it tell us?
I ‘ “Not provable” applied to γ is true iff γ is true’

I If γ is true, then it’s not provable.
I If γ is false, then it’s provable, contradicting soundness.

A little more detail 12.5/13

For a fully detailed
proof, get Douglas
R. Hofstadter,
Gödel, Escher, Bach:
An Eternal Golden
Braid

I Put Notpr = ¬∃y .Pf (x , y), so Notpr says ‘φ is not provable,
where x = pφq’.

I It can be shown that for any one-variable formula φ(x), there is
a sentence Diag(φ) such that

Diag(φ)↔ φ(pDiag(φ)q)

is provable: Diag(φ) is true iff φ applied to the code of
Diag(φ) is true.

I Now consider γ = Diag(Notpr). What does it tell us?
I ‘ “Not provable” applied to γ is true iff γ is true’

I If γ is true, then it’s not provable.

I If γ is false, then it’s provable, contradicting soundness.

A little more detail 12.6/13

For a fully detailed
proof, get Douglas
R. Hofstadter,
Gödel, Escher, Bach:
An Eternal Golden
Braid

I Put Notpr = ¬∃y .Pf (x , y), so Notpr says ‘φ is not provable,
where x = pφq’.

I It can be shown that for any one-variable formula φ(x), there is
a sentence Diag(φ) such that

Diag(φ)↔ φ(pDiag(φ)q)

is provable: Diag(φ) is true iff φ applied to the code of
Diag(φ) is true.

I Now consider γ = Diag(Notpr). What does it tell us?
I ‘ “Not provable” applied to γ is true iff γ is true’

I If γ is true, then it’s not provable.
I If γ is false, then it’s provable, contradicting soundness.

A little more detail 12.7/13

For a fully detailed
proof, get Douglas
R. Hofstadter,
Gödel, Escher, Bach:
An Eternal Golden
Braid

I Put Notpr = ¬∃y .Pf (x , y), so Notpr says ‘φ is not provable,
where x = pφq’.

I It can be shown that for any one-variable formula φ(x), there is
a sentence Diag(φ) such that

Diag(φ)↔ φ(pDiag(φ)q)

is provable: Diag(φ) is true iff φ applied to the code of
Diag(φ) is true.

I Now consider γ = Diag(Notpr). What does it tell us?
I ‘ “Not provable” applied to γ is true iff γ is true’

I If γ is true, then it’s not provable.
I If γ is false, then it’s provable, contradicting soundness.

Decidability 13.1/13

We have seen that � φ iff ` φ. Can we decide, purely
mechanically, whether � φ (and hence whether ` φ) ?

In general, no. For the logic we’ve used in examples, with unary
predicates p(x) and no functions, we can. But once you add binary
predicates p(x , y) or a couple of functions f , g : X → X , it breaks:
I If ` φ, we can mechanically find a proof of that. (Check all

possible proofs till we find one.)
I If 0 φ, we cannot always determine this.

The proof goes like this:
I Turing showed that no program can compute whether arbitrary

other programs ever finish. (The proof is very similar to the
incompleteness proof.)

I If we have enough symbols, we can express the execution of a
program in logic and write a formula that is valid iff a program
halts.

Decidability 13.2/13

We have seen that � φ iff ` φ. Can we decide, purely
mechanically, whether � φ (and hence whether ` φ) ?
In general, no. For the logic we’ve used in examples, with unary
predicates p(x) and no functions, we can. But once you add binary
predicates p(x , y) or a couple of functions f , g : X → X , it breaks:
I If ` φ, we can mechanically find a proof of that. (Check all

possible proofs till we find one.)
I If 0 φ, we cannot always determine this.

The proof goes like this:
I Turing showed that no program can compute whether arbitrary

other programs ever finish. (The proof is very similar to the
incompleteness proof.)

I If we have enough symbols, we can express the execution of a
program in logic and write a formula that is valid iff a program
halts.

Decidability 13.3/13

We have seen that � φ iff ` φ. Can we decide, purely
mechanically, whether � φ (and hence whether ` φ) ?
In general, no. For the logic we’ve used in examples, with unary
predicates p(x) and no functions, we can. But once you add binary
predicates p(x , y) or a couple of functions f , g : X → X , it breaks:
I If ` φ, we can mechanically find a proof of that. (Check all

possible proofs till we find one.)
I If 0 φ, we cannot always determine this.

The proof goes like this:
I Turing showed that no program can compute whether arbitrary

other programs ever finish. (The proof is very similar to the
incompleteness proof.)

I If we have enough symbols, we can express the execution of a
program in logic and write a formula that is valid iff a program
halts.

