Informatics 1 - Introduction to Computation Computation and Logic Julian Bradfield based on materials by Michael P. Fourman

Finding Satisfying Assignments DPLL

Martin Davis, 1928-
Photo: George Bergman

Hilary Putnam, 1926-2016

George Logemann, 1938-2012
Donald Loveland, 1934-

CNF language in Haskell

Last week in CL we looked at Karnaugh Maps as a way to convert boolean expressions to DNF or CNF.
Last week in FP you learned how to represent formal languages (arithmetic expressions and boolean propositions (WFFs)) in Haskell. Now we will implement boolean propositions in CNF and use them to solve problems.
Recall that in CNF, a formula is a conjunction of clauses; a clause is a disjunction of literals; a literal is either an atom or a negated atom; and an atom is a basic boolean proposition.

Here is a simple implementation:

```
-- this lets us choose any Atom type without redefining things
data Literal atom = P atom | N atom
    -- positive and negative literals
data Clause atom = Or [ Literal atom ]
    -- "Or" is a data constructor, no connection to "or" except
    -- in our heads
data Form atom = And[ Clause atom ]
-- and here is a simple atom type
data Atom = A|B|C|D|W|X|Y|Z deriving (Eq,Show)
    -- we have to be able to compare atoms
```

In practice we'll have everything deriving Eq, and add stuff to print formulae nicely - see the book or the attached file

```
-- function to negate literals
neg :: Literal a -> Literal a
neg (P a) = N a
neg (N a) = P a
```

 -- an example CNF formula
 $\mathrm{eg}=\operatorname{And}[\operatorname{Or}[\mathrm{NA} A \mathrm{~N} C, \mathrm{P} D], \operatorname{Or}[\mathrm{PA} A \mathrm{P} C], \operatorname{Or}[\mathrm{N} D]$]
-- instead of full environments, a valuation is just
-- a list of the true literals
data Val a = Val [Literal a]

First, let's look at evaluating a formula given a valuation.

```
eval (Val tls) (And cs) =
    and [ or [ l `elem` tls | l <- c ] | Or c <- cs ]
```

First, let's look at evaluating a formula given a valuation.

```
eval (Val true_literals) (And clauses) =
    and [ or [ literal `elem` true_literals
        | literal <- clause ] | Or clause <- clauses ]
```

eval (Val []) eg
-- False
eval (Val [N C, P A, N D]) eg
-- True
where we had defined
$\mathrm{eg}=\operatorname{And}[\operatorname{Or}[\mathrm{N} A, \mathrm{~N} C, \mathrm{P} D]$, Or[PA, PC], Or[N D]]
This notion of valuation is a bit strange: neither $P A$ nor $N A$ is in [], so is A true or false?

In most applications we have a formula Φ and we want to find a valuation that makes it true - if there is one.
What is a simple way to do this?

In most applications we have a formula Φ and we want to find a valuation that makes it true - if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one in turn.

In most applications we have a formula Φ and we want to find a valuation that makes it true - if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one in turn.
If there are n atoms, how many possible valuations are there?

In most applications we have a formula Φ and we want to find a valuation that makes it true - if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one in turn.
If there are n atoms, how many possible valuations are there? The brute force way always looks at all 2^{n} valuations. This is ok for a few atoms, but becomes quickly unmanageable. Can we do better?

In most applications we have a formula Φ and we want to find a valuation that makes it true - if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one in turn.
If there are n atoms, how many possible valuations are there?
The brute force way always looks at all 2^{n} valuations. This is ok for a few atoms, but becomes quickly unmanageable. Can we do better?
Nobody knows how to (or whether we even can) avoid 2^{n} in general. But there are algorithms which do much better most of the time.

If you can find a fast way of finding a satisfying assignment, or prove it impossible, you will win \$1M and eternal fame. This is $P \stackrel{?}{=} N P$.

With a formula in CNF, such as

$$
\phi=(\neg A \vee \neg C \vee \neg D) \wedge(A \vee C) \wedge \neg D
$$

we want a valuation that makes every clause true.

This is not quite the previous example. Check to see what's different...

With a formula in CNF, such as

$$
\Phi=(\neg A \vee \neg C \vee \neg D) \wedge(A \vee C) \wedge \neg D
$$

we want a valuation that makes every clause true. We can see this as looking for a Γ such that

$$
\Gamma \vDash \neg A, \neg C, \neg D \quad \Gamma \vDash A, C \quad \Gamma \vDash \neg D
$$

With a formula in CNF, such as

$$
\Phi=(\neg A \vee \neg C \vee \neg D) \wedge(A \vee C) \wedge \neg D
$$

we want a valuation that makes every clause true. We can see this as looking for a Γ such that

$$
\Gamma \vDash \neg A, \neg C, \neg D \quad \Gamma \vDash A, C \quad \Gamma \vDash \neg D
$$

Recall that assuming false lets us prove anything.
Γ must be consistent - not contain both A and $\neg A$!

With a formula in CNF, such as

$$
\Phi=(\neg A \vee \neg C \vee \neg D) \wedge(A \vee C) \wedge \neg D
$$

we want a valuation that makes every clause true. We can see this as looking for a Γ such that

$$
\Gamma \vDash \neg A, \neg C, \neg D \quad \Gamma \vDash A, C \quad \Gamma \vDash \neg D
$$

Recall that assuming false lets us prove anything.
Γ must be consistent - not contain both A and $\neg A$!
But Γ does not need to contain every atom, only the ones that are needed: e.g. $\vDash A, \neg A$. That's why our 'valuations' were not full environments.

The Davis-Putnam-Logemann-Loveland algorithm is still, 60 years after its invention, the fastest general purpose satisfiability algorithm.
The basic idea is:

- look at one atom at a time
- set it to \top and simplify, recursively seek a satisfying assignment
- if that failed, set it to \perp, recursively seek a satisfying assignment

$$
\text { \& } \neg A, \neg C, \neg D \quad \text { \& } A, C \quad \text { \& } \neg D
$$

$$
\text { f } \neg A, \neg C, \neg D \quad \text { \& } A, C \quad \text { \& } \neg D
$$

Choose A, set to T, and simplify:

$$
A \nRightarrow \neg A, \neg C, \neg D \quad A \vDash A, C \quad A \nvdash \neg D
$$

Note two simplifications: remove RHS literals that contradict, remove clauses that match.

$$
\text { ? } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { ? } \neg D
$$

Choose A, set to T, and simplify:

$$
A \not \neg \neg A, \neg C, \neg D \quad A \vDash A, C \quad A \nvdash \neg D
$$

Choose C, set to T, and simplify:

$$
A, C \nvdash \neg, \neg D \quad A, C \nvdash \neg D
$$

Note two simplifications: remove RHS literals that contradict, remove clauses that match.

$$
\text { f } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { f } \neg D
$$

Choose A, set to T, and simplify:

$$
A \ngtr \neg A, \neg C, \neg D \quad A \vDash A, C \quad A \ngtr \neg D
$$

Choose C, set to T, and simplify:

$$
A, C \nvdash \neg \varnothing \neg D \quad A, C \nvdash \neg D
$$

Choose D, set to \top, and simplify:

$$
A, C, D \not \models \neg \emptyset \quad A, C, D \not \models \neg \emptyset
$$

Note two simplifications: remove RHS literals that contradict, remove clauses that match.
Simplified to empty clauses, i.e. \perp. One of these is enough to fail!

$$
\text { \& } \neg A, \neg C, \neg D \quad \text { \& } A, C \quad \text { \& } \neg D
$$

Choose A, set to T, and simplify:

$$
A \ngtr \neg A, \neg C, \neg D \quad A \vDash A, C \quad A \ngtr \neg D
$$

Choose C, set to T, and simplify:

$$
A, C \nvdash \neg \varnothing, \neg D \quad A, C \nvdash \neg D
$$

Choose D, set to T, and simplify:

$$
A, C, D \not \vDash \neg \emptyset \quad A, C, D \not \vDash \neg \emptyset
$$

Note two simplifications: remove RHS literals that contradict, remove clauses that match.
Simplified to empty clauses, i.e. \perp. One of these is enough to fail!

Failed, so set D to \perp and simplify:

$$
A, C, \neg D \vDash \neg D \quad A, C, \neg D \vDash \neg D
$$

$$
\text { \& } \neg A, \neg C, \neg D \quad \text { \& } A, C \quad \text { \& } \neg D
$$

Choose A, set to \top, and simplify:

$$
A \not \neg \neg A, \neg C, \neg D \quad A \vDash A, C \quad A \nvdash \neg D
$$

Choose C, set to T, and simplify:

$$
A, C \nvdash \neg \varnothing, \neg D \quad A, C \nvdash \neg D
$$

Choose D, set to T, and simplify:

$$
A, C, D \not \vDash \neg \emptyset \quad A, C, D \nvdash \neg \emptyset
$$

Note two simplifications: remove RHS literals that contradict, remove clauses that match.
Simplified to empty clauses, i.e. \perp. One of these is enough to fail!

Failed, so set D to \perp and simplify:

$$
A, C, \rightarrow D \vDash \neg D \quad A, C, \neg D=\neg D
$$

Nothing left to satisfy, so $A, C, \neg D$ works.

$$
\text { ? } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { ? } \neg D
$$

There is an obviously more sensible atom than A to start with!

$$
\text { ? } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { ? } \neg D
$$

There is an obviously more sensible atom than A to start with!
D has two properties that make it good to start with:

$$
\text { f } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { f } \neg D
$$

There is an obviously more sensible atom than A to start with!
D has two properties that make it good to start with:

- $\neg D$ is only literal in last clause, so we must set D to \perp.

$$
\text { ? } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { ? } \neg D
$$

There is an obviously more sensible atom than A to start with!
D has two properties that make it good to start with:

- $\neg D$ is only literal in last clause, so we must set D to \perp.
- D is pure: some clause has $\neg D$, and no clause has D. So setting $D=\perp$ is everywhere good.

$$
\text { ? } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { ? } \neg D
$$

There is an obviously more sensible atom than A to start with!
D has two properties that make it good to start with:

- $\neg D$ is only literal in last clause, so we must set D to \perp.
- D is pure: some clause has $\neg D$, and no clause has D. So setting $D=\perp$ is everywhere good.

Hence: choose D, set to \perp and simplify:

$$
\neg D \vDash \neg A, \neg C, \neg D \quad \neg D \nLeftarrow A, C \quad \neg D \vDash \neg D
$$

$$
\text { ? } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { ? } \neg D
$$

There is an obviously more sensible atom than A to start with!
D has two properties that make it good to start with:

- $\neg D$ is only literal in last clause, so we must set D to \perp.
- D is pure: some clause has $\neg D$, and no clause has D. So setting $D=\perp$ is everywhere good.
Hence: choose D, set to \perp and simplify:

$$
\neg D \vDash \neg A, \neg C, \neg D \quad \neg D \nLeftarrow A, C \quad \neg D \vDash \neg D
$$

The remaining clause(s) are a consistent set of literals, so make them all true: set $A=\mathrm{T}, C=\mathrm{T}$. And we're done.

$$
\text { ? } \neg A, \neg C, \neg D \quad \text { ? } A, C \quad \text { ? } \neg D
$$

There is an obviously more sensible atom than A to start with!
D has two properties that make it good to start with:

- $\neg D$ is only literal in last clause, so we must set D to \perp.
- D is pure: some clause has $\neg D$, and no clause has D. So setting $D=\perp$ is everywhere good.
Hence: choose D, set to \perp and simplify:

$$
\neg D \vDash \neg A, \neg C, \neg D \quad \neg D \nLeftarrow A, C \quad \neg D \vDash \neg D
$$

The remaining clause(s) are a consistent set of literals, so make them all true: set $A=\mathrm{T}, C=\mathrm{T}$. And we're done.
In addition, it's a good rule of thumb (heuristic) to start with literals from shorter clauses.

Given a set Φ of clauses:

DPLL (Φ)

if literals of Φ are consistent then
set atoms to make all literals true
else if ϕ has an empty clause then
no satisfying assignment
else
make each one-literal clause true and simplify Φ to Φ^{\prime}
set each pure literal true and simplify Φ^{\prime} to $\Phi^{\prime \prime}$
choose a remaining atom a
if $\operatorname{DPLL}\left(\right.$ set a true; simplify $\left.\Phi^{\prime \prime}\right)$ succeeds then
return result
else
DPLL(set a false; simplify $\left.\Phi^{\prime \prime}\right)$

Given a set ϕ of clauses:

DPLL (Φ)

if literals of Φ are consistent then
set atoms to make all literals true
else if ϕ has an empty clause then
no satisfying assignment
else
make each one-literal clause true and simplify Φ to Φ^{\prime}
set each pure literal true and simplify Φ^{\prime} to $\Phi^{\prime \prime}$
choose a remaining atom a
if DPLL(set a true; simplify $\Phi^{\prime \prime}$) succeeds then
return result
else
DPLL(set a false; simplify $\left.\Phi^{\prime \prime}\right)$

See the book for a
Haskell
implementation - or
try to write your own first!

Sudoku is a popular puzzle game.

- Given: a 9×9 grid, divided into nine 3×3 subgrids, with some cells containing digits from 1 to 9
- Goal: complete the grid so that each row, each column, and each subgrid contains all nine digits

		4	8	3			7	2
	1	2					8	
		5	2		1	3		
				6	2		9	1
7			5		9			3
9	4		7	8				
		3	9		7	4		
	5					6	1	
	8			4	6	9		

Sudoku is a popular puzzle game.

- Given: a 9×9 grid, divided into nine 3×3 subgrids, with some cells containing digits from 1 to 9
- Goal: complete the grid so that each row, each column, and each subgrid contains all nine digits

		4	8	3			7	2
	1	2					8	
		5	2		1	3		
				6	2		9	1
7			5		9			3
9	4		7	8				
		3	9		7	4		
	5					6	1	
	8			4	6	9		

6	9	4	8	3	5	1	7	2
3	1	2	6	7	4	5	8	9
8	7	5	2	9	1	3	6	4
5	3	8	4	6	2	7	9	1
7	2	6	5	1	9	8	4	3
9	4	1	7	8	3	2	5	6
1	6	3	9	5	7	4	2	8
4	5	9	3	2	8	6	1	7
2	8	7	1	4	6	9	3	5

This puzzle was solved by the $\operatorname{AT} T_{E X}$ package that printed it. The solver is 1000 lines of $4 T_{E} X$, and it isn't doing CNF-SAT.

How do we express 'cell $(7,1)$ is filled with digit 4'?

How do we express 'cell $(7,1)$ is filled with digit 4'?
We use one atom for every combination of row, column and digit!
$F_{i j n}$ where $1 \leq i, j, n \leq 9$ means 'cell (i, j) has n '
For readability we'll write $F(i, j, n)$ instead of $F_{i j n}$.

How do we express 'cell $(7,1)$ is filled with digit 4'?
We use one atom for every combination of row, column and digit!

$$
F_{i j n} \text { where } 1 \leq i, j, n \leq 9 \text { means 'cell }(i, j) \text { has } n \text { ' }
$$

For readability we'll write $F(i, j, n)$ instead of $F_{i j n}$.
We shall concoct CNF formulae for the rules of the solution, and for the initial state, and try to satisfy the conjunction of these.

All indices range over $1 \ldots 9$ unless given otherwise.

All indices range over $1 \ldots 9$ unless given otherwise.
No cell is double-filled:

$$
\bigwedge_{i, j, n, n^{\prime} \neq n} \neg F(i, j, n) \vee \neg F\left(i, j, n^{\prime}\right)
$$

All indices range over $1 \ldots 9$ unless given otherwise.
No cell is double-filled:

$$
\bigwedge_{i, j, n, n^{\prime} \neq n} \neg F(i, j, n) \vee \neg F\left(i, j, n^{\prime}\right)
$$

Every row has each digit and every column has each digit:

$$
\bigwedge_{i, n} \bigvee_{j} F(i, j, n) \quad \bigwedge_{j, n} \bigvee_{i} F(i, j, n)
$$

All indices range over $1 \ldots 9$ unless given otherwise.
No cell is double-filled:

$$
\bigwedge_{i, j, n, n^{\prime} \neq n} \neg F(i, j, n) \vee \neg F\left(i, j, n^{\prime}\right)
$$

Every row has each digit and every column has each digit:

$$
\bigwedge_{i, n} \bigvee_{j} F(i, j, n) \quad \bigwedge_{j, n} \bigvee_{i} F(i, j, n)
$$

Every subgrid has each digit:

$$
\bigwedge_{0 \leq a \leq 2,0 \leq b \leq 2, n} \bigvee_{3 a+1 \leq i \leq 3 a+3,3 b+1 \leq j \leq 3 b+3} F(i, j, n)
$$

All indices range over $1 \ldots 9$ unless given otherwise.
No cell is double-filled:

$$
\bigwedge_{i, j, n, n^{\prime} \neq n} \neg F(i, j, n) \vee \neg F\left(i, j, n^{\prime}\right)
$$

Every row has each digit and every column has each digit:

$$
\bigwedge_{i, n} \bigvee_{j} F(i, j, n) \quad \bigwedge_{j, n} \bigvee_{i} F(i, j, n)
$$

Every subgrid has each digit:

Other rules (used during solving): can't have same digit twice in row/column/subgrid.

All indices range over $1 \ldots 9$ unless given otherwise.
No cell is double-filled:

$$
\bigwedge_{i, j, n, n^{\prime} \neq n} \neg F(i, j, n) \vee \neg F\left(i, j, n^{\prime}\right)
$$

Every row has each digit and every column has each digit:

$$
\bigwedge_{i, n} \bigvee_{j} F(i, j, n) \quad \bigwedge_{j, n} \bigvee_{i} F(i, j, n)
$$

Every subgrid has each digit:

Other rules (used during solving): can't have same digit twice in row/column/subgrid.

The formula for the starting position is easy: just conjoin all the $F(i, j, n)$ for each digit n in position (i, j).
For the details in Haskell, see the book and the tutorial exercises.

