
Martin Davis, 1928–
Photo: George Bergman

Hilary Putnam, 1926–2016

George Logemann, 1938–2012
Donald Loveland, 1934–

Informatics 1 – Introduction to Computation
Computation and Logic

Julian Bradfield
based on materials by
Michael P. Fourman

Finding Satisfying Assignments
DPLL

CNF language in Haskell 2.1/14

Last week in CL we looked at Karnaugh Maps as a way to convert
boolean expressions to DNF or CNF.
Last week in FP you learned how to represent formal languages
(arithmetic expressions and boolean propositions (WFFs)) in Haskell.
Now we will implement boolean propositions in CNF and use them
to solve problems.
Recall that in CNF, a formula is a conjunction of clauses; a clause is
a disjunction of literals; a literal is either an atom or a negated
atom; and an atom is a basic boolean proposition.

CNF: the basic datatypes 3.1/14

Here is a simple implementation:

-- this lets us choose any Atom type without redefining things
data Literal atom = P atom | N atom
-- positive and negative literals

data Clause atom = Or [Literal atom]
-- "Or" is a data constructor, no connection to "or" except
-- in our heads

data Form atom = And[Clause atom]
-- and here is a simple atom type
data Atom = A|B|C|D|W|X|Y|Z deriving (Eq,Show)
-- we have to be able to compare atoms

In practice we’ll have everything deriving Eq, and add stuff to print
formulae nicely – see the book or the attached file

CNF: utilities and examples 4.1/14

-- function to negate literals
neg :: Literal a -> Literal a
neg (P a) = N a
neg (N a) = P a

-- an example CNF formula
eg = And[Or[N A, N C, P D], Or[P A, P C], Or[N D]]

-- instead of full environments, a valuation is just
-- a list of the true literals
data Val a = Val [Literal a]

Evaluating formulae 5.1/14

First, let’s look at evaluating a formula given a valuation.
eval (Val tls) (And cs) =

and [or [l `elem` tls | l <- c] | Or c <- cs]

eval (Val true_literals) (And clauses) =
and [or [literal `elem` true_literals

| literal <- clause] | Or clause <- clauses]

eval (Val []) eg
-- False

eval (Val [N C, P A, N D]) eg
-- True

where we had defined

eg = And[Or[N A, N C, P D], Or[P A, P C], Or[N D]]

This notion of valuation is a bit strange: neither P A nor N A is in
[], so is A true or false?

Evaluating formulae 5.2/14

First, let’s look at evaluating a formula given a valuation.

eval (Val true_literals) (And clauses) =
and [or [literal `elem` true_literals

| literal <- clause] | Or clause <- clauses]

eval (Val []) eg
-- False

eval (Val [N C, P A, N D]) eg
-- True

where we had defined

eg = And[Or[N A, N C, P D], Or[P A, P C], Or[N D]]

This notion of valuation is a bit strange: neither P A nor N A is in
[], so is A true or false?

Finding satisfying assignments 6.1/14

If you can find a fast
way of finding a
satisfying
assignment, or prove
it impossible, you
will win $1M and
eternal fame. This is
P ?
= NP.

In most applications we have a formula Φ and we want to find a
valuation that makes it true – if there is one.
What is a simple way to do this?

It is easy to list all possible valuations and check Φ under each one
in turn.
If there are n atoms, how many possible valuations are there?
The brute force way always looks at all 2n valuations. This is ok for
a few atoms, but becomes quickly unmanageable. Can we do
better?
Nobody knows how to (or whether we even can) avoid 2n in general.
But there are algorithms which do much better most of the time.

Finding satisfying assignments 6.2/14

If you can find a fast
way of finding a
satisfying
assignment, or prove
it impossible, you
will win $1M and
eternal fame. This is
P ?
= NP.

In most applications we have a formula Φ and we want to find a
valuation that makes it true – if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one
in turn.

If there are n atoms, how many possible valuations are there?
The brute force way always looks at all 2n valuations. This is ok for
a few atoms, but becomes quickly unmanageable. Can we do
better?
Nobody knows how to (or whether we even can) avoid 2n in general.
But there are algorithms which do much better most of the time.

Finding satisfying assignments 6.3/14

If you can find a fast
way of finding a
satisfying
assignment, or prove
it impossible, you
will win $1M and
eternal fame. This is
P ?
= NP.

In most applications we have a formula Φ and we want to find a
valuation that makes it true – if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one
in turn.
If there are n atoms, how many possible valuations are there?

The brute force way always looks at all 2n valuations. This is ok for
a few atoms, but becomes quickly unmanageable. Can we do
better?
Nobody knows how to (or whether we even can) avoid 2n in general.
But there are algorithms which do much better most of the time.

Finding satisfying assignments 6.4/14

If you can find a fast
way of finding a
satisfying
assignment, or prove
it impossible, you
will win $1M and
eternal fame. This is
P ?
= NP.

In most applications we have a formula Φ and we want to find a
valuation that makes it true – if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one
in turn.
If there are n atoms, how many possible valuations are there?
The brute force way always looks at all 2n valuations. This is ok for
a few atoms, but becomes quickly unmanageable. Can we do
better?

Nobody knows how to (or whether we even can) avoid 2n in general.
But there are algorithms which do much better most of the time.

Finding satisfying assignments 6.5/14

If you can find a fast
way of finding a
satisfying
assignment, or prove
it impossible, you
will win $1M and
eternal fame. This is
P ?
= NP.

In most applications we have a formula Φ and we want to find a
valuation that makes it true – if there is one.
What is a simple way to do this?
It is easy to list all possible valuations and check Φ under each one
in turn.
If there are n atoms, how many possible valuations are there?
The brute force way always looks at all 2n valuations. This is ok for
a few atoms, but becomes quickly unmanageable. Can we do
better?
Nobody knows how to (or whether we even can) avoid 2n in general.
But there are algorithms which do much better most of the time.

Valuations as assumptions 7.1/14

This is not quite the
previous example.
Check to see what’s
different . . .

Recall that assuming
false lets us prove
anything.

With a formula in CNF, such as

Φ = (¬A ∨ ¬C ∨ ¬D) ∧ (A ∨ C) ∧ ¬D

we want a valuation that makes every clause true.

We can see this
as looking for a Γ such that

Γ � ¬A,¬C ,¬D Γ � A,C Γ � ¬D

Γ must be consistent – not contain both A and ¬A !
But Γ does not need to contain every atom, only the ones that are
needed: e.g. � A,¬A. That’s why our ‘valuations’ were not full
environments.

Valuations as assumptions 7.2/14

This is not quite the
previous example.
Check to see what’s
different . . .
Recall that assuming
false lets us prove
anything.

With a formula in CNF, such as

Φ = (¬A ∨ ¬C ∨ ¬D) ∧ (A ∨ C) ∧ ¬D

we want a valuation that makes every clause true. We can see this
as looking for a Γ such that

Γ � ¬A,¬C ,¬D Γ � A,C Γ � ¬D

Γ must be consistent – not contain both A and ¬A !
But Γ does not need to contain every atom, only the ones that are
needed: e.g. � A,¬A. That’s why our ‘valuations’ were not full
environments.

Valuations as assumptions 7.3/14

This is not quite the
previous example.
Check to see what’s
different . . .

Recall that assuming
false lets us prove
anything.

With a formula in CNF, such as

Φ = (¬A ∨ ¬C ∨ ¬D) ∧ (A ∨ C) ∧ ¬D

we want a valuation that makes every clause true. We can see this
as looking for a Γ such that

Γ � ¬A,¬C ,¬D Γ � A,C Γ � ¬D

Γ must be consistent – not contain both A and ¬A !

But Γ does not need to contain every atom, only the ones that are
needed: e.g. � A,¬A. That’s why our ‘valuations’ were not full
environments.

Valuations as assumptions 7.4/14

This is not quite the
previous example.
Check to see what’s
different . . .

Recall that assuming
false lets us prove
anything.

With a formula in CNF, such as

Φ = (¬A ∨ ¬C ∨ ¬D) ∧ (A ∨ C) ∧ ¬D

we want a valuation that makes every clause true. We can see this
as looking for a Γ such that

Γ � ¬A,¬C ,¬D Γ � A,C Γ � ¬D

Γ must be consistent – not contain both A and ¬A !
But Γ does not need to contain every atom, only the ones that are
needed: e.g. � A,¬A. That’s why our ‘valuations’ were not full
environments.

DPLL: the basics 8.1/14

The Davis–Putnam–Logemann–Loveland algorithm is still, 60 years
after its invention, the fastest general purpose satisfiability
algorithm.
The basic idea is:

I look at one atom at a time
I set it to > and simplify, recursively seek a satisfying assignment
I if that failed, set it to ⊥, recursively seek a satisfying

assignment

DPLL: basics: example 9.1/14

Note two
simplifications:
remove RHS literals
that contradict,
remove clauses that
match.
Simplified to empty
clauses, i.e. ⊥. One
of these is enough to
fail!

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

Choose A, set to >, and simplify:

A ?���¬A,¬C ,¬D ���
��A � A,C A ?� ¬D

Choose C , set to >, and simplify:

A,C ?����¬C , ¬D A,C ?� ¬D

Choose D, set to >, and simplify:

A,C ,D 2��¬D A,C ,D 2��¬D

Failed, so set D to ⊥ and simplify:

((((
((((A,C ,¬D � ¬D ((((

((((A,C ,¬D � ¬D

Nothing left to satisfy, so A,C ,¬D works.

DPLL: basics: example 9.2/14

Note two
simplifications:
remove RHS literals
that contradict,
remove clauses that
match.

Simplified to empty
clauses, i.e. ⊥. One
of these is enough to
fail!

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

Choose A, set to >, and simplify:

A ?���¬A,¬C ,¬D ���
��A � A,C A ?� ¬D

Choose C , set to >, and simplify:

A,C ?����¬C , ¬D A,C ?� ¬D

Choose D, set to >, and simplify:

A,C ,D 2��¬D A,C ,D 2��¬D

Failed, so set D to ⊥ and simplify:

((((
((((A,C ,¬D � ¬D ((((

((((A,C ,¬D � ¬D

Nothing left to satisfy, so A,C ,¬D works.

DPLL: basics: example 9.3/14

Note two
simplifications:
remove RHS literals
that contradict,
remove clauses that
match.

Simplified to empty
clauses, i.e. ⊥. One
of these is enough to
fail!

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

Choose A, set to >, and simplify:

A ?���¬A,¬C ,¬D ���
��A � A,C A ?� ¬D

Choose C , set to >, and simplify:

A,C ?����¬C , ¬D A,C ?� ¬D

Choose D, set to >, and simplify:

A,C ,D 2��¬D A,C ,D 2��¬D

Failed, so set D to ⊥ and simplify:

((((
((((A,C ,¬D � ¬D ((((

((((A,C ,¬D � ¬D

Nothing left to satisfy, so A,C ,¬D works.

DPLL: basics: example 9.4/14

Note two
simplifications:
remove RHS literals
that contradict,
remove clauses that
match.
Simplified to empty
clauses, i.e. ⊥. One
of these is enough to
fail!

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

Choose A, set to >, and simplify:

A ?���¬A,¬C ,¬D ���
��A � A,C A ?� ¬D

Choose C , set to >, and simplify:

A,C ?����¬C , ¬D A,C ?� ¬D

Choose D, set to >, and simplify:

A,C ,D 2��¬D A,C ,D 2��¬D

Failed, so set D to ⊥ and simplify:

((((
((((A,C ,¬D � ¬D ((((

((((A,C ,¬D � ¬D

Nothing left to satisfy, so A,C ,¬D works.

DPLL: basics: example 9.5/14

Note two
simplifications:
remove RHS literals
that contradict,
remove clauses that
match.
Simplified to empty
clauses, i.e. ⊥. One
of these is enough to
fail!

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

Choose A, set to >, and simplify:

A ?���¬A,¬C ,¬D ���
��A � A,C A ?� ¬D

Choose C , set to >, and simplify:

A,C ?����¬C , ¬D A,C ?� ¬D

Choose D, set to >, and simplify:

A,C ,D 2��¬D A,C ,D 2��¬D

Failed, so set D to ⊥ and simplify:

((((
((((A,C ,¬D � ¬D ((((

((((A,C ,¬D � ¬D

Nothing left to satisfy, so A,C ,¬D works.

DPLL: basics: example 9.6/14

Note two
simplifications:
remove RHS literals
that contradict,
remove clauses that
match.
Simplified to empty
clauses, i.e. ⊥. One
of these is enough to
fail!

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

Choose A, set to >, and simplify:

A ?���¬A,¬C ,¬D ���
��A � A,C A ?� ¬D

Choose C , set to >, and simplify:

A,C ?����¬C , ¬D A,C ?� ¬D

Choose D, set to >, and simplify:

A,C ,D 2��¬D A,C ,D 2��¬D

Failed, so set D to ⊥ and simplify:

((((
((((A,C ,¬D � ¬D ((((

((((A,C ,¬D � ¬D

Nothing left to satisfy, so A,C ,¬D works.

DPLL: optimizations 10.1/14

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

There is an obviously more sensible atom than A to start with!

D has two properties that make it good to start with:

I ¬D is only literal in last clause, so we must set D to ⊥.
I D is pure: some clause has ¬D, and no clause has D. So

setting D = ⊥ is everywhere good.

Hence: choose D, set to ⊥ and simplify:

((((
((((

(
¬D � ¬A,¬C ,¬D ¬D ?� A,C ((((

(¬D � ¬D

The remaining clause(s) are a consistent set of literals, so make
them all true: set A = >,C = >. And we’re done.
In addition, it’s a good rule of thumb (heuristic) to start with
literals from shorter clauses.

DPLL: optimizations 10.2/14

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

There is an obviously more sensible atom than A to start with!

D has two properties that make it good to start with:

I ¬D is only literal in last clause, so we must set D to ⊥.
I D is pure: some clause has ¬D, and no clause has D. So

setting D = ⊥ is everywhere good.

Hence: choose D, set to ⊥ and simplify:

((((
((((

(
¬D � ¬A,¬C ,¬D ¬D ?� A,C ((((

(¬D � ¬D

The remaining clause(s) are a consistent set of literals, so make
them all true: set A = >,C = >. And we’re done.
In addition, it’s a good rule of thumb (heuristic) to start with
literals from shorter clauses.

DPLL: optimizations 10.3/14

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

There is an obviously more sensible atom than A to start with!

D has two properties that make it good to start with:

I ¬D is only literal in last clause, so we must set D to ⊥.

I D is pure: some clause has ¬D, and no clause has D. So
setting D = ⊥ is everywhere good.

Hence: choose D, set to ⊥ and simplify:

((((
((((

(
¬D � ¬A,¬C ,¬D ¬D ?� A,C ((((

(¬D � ¬D

The remaining clause(s) are a consistent set of literals, so make
them all true: set A = >,C = >. And we’re done.
In addition, it’s a good rule of thumb (heuristic) to start with
literals from shorter clauses.

DPLL: optimizations 10.4/14

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

There is an obviously more sensible atom than A to start with!

D has two properties that make it good to start with:

I ¬D is only literal in last clause, so we must set D to ⊥.
I D is pure: some clause has ¬D, and no clause has D. So

setting D = ⊥ is everywhere good.

Hence: choose D, set to ⊥ and simplify:

((((
((((

(
¬D � ¬A,¬C ,¬D ¬D ?� A,C ((((

(¬D � ¬D

The remaining clause(s) are a consistent set of literals, so make
them all true: set A = >,C = >. And we’re done.
In addition, it’s a good rule of thumb (heuristic) to start with
literals from shorter clauses.

DPLL: optimizations 10.5/14

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

There is an obviously more sensible atom than A to start with!

D has two properties that make it good to start with:

I ¬D is only literal in last clause, so we must set D to ⊥.
I D is pure: some clause has ¬D, and no clause has D. So

setting D = ⊥ is everywhere good.

Hence: choose D, set to ⊥ and simplify:

((((
((((

(
¬D � ¬A,¬C ,¬D ¬D ?� A,C ((((

(¬D � ¬D

The remaining clause(s) are a consistent set of literals, so make
them all true: set A = >,C = >. And we’re done.
In addition, it’s a good rule of thumb (heuristic) to start with
literals from shorter clauses.

DPLL: optimizations 10.6/14

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

There is an obviously more sensible atom than A to start with!

D has two properties that make it good to start with:

I ¬D is only literal in last clause, so we must set D to ⊥.
I D is pure: some clause has ¬D, and no clause has D. So

setting D = ⊥ is everywhere good.

Hence: choose D, set to ⊥ and simplify:

((((
((((

(
¬D � ¬A,¬C ,¬D ¬D ?� A,C ((((

(¬D � ¬D

The remaining clause(s) are a consistent set of literals, so make
them all true: set A = >,C = >. And we’re done.

In addition, it’s a good rule of thumb (heuristic) to start with
literals from shorter clauses.

DPLL: optimizations 10.7/14

?� ¬A,¬C ,¬D ?� A,C ?� ¬D

There is an obviously more sensible atom than A to start with!

D has two properties that make it good to start with:

I ¬D is only literal in last clause, so we must set D to ⊥.
I D is pure: some clause has ¬D, and no clause has D. So

setting D = ⊥ is everywhere good.

Hence: choose D, set to ⊥ and simplify:

((((
((((

(
¬D � ¬A,¬C ,¬D ¬D ?� A,C ((((

(¬D � ¬D

The remaining clause(s) are a consistent set of literals, so make
them all true: set A = >,C = >. And we’re done.
In addition, it’s a good rule of thumb (heuristic) to start with
literals from shorter clauses.

The DPLL algorithm 11.1/14

See the book for a
Haskell
implementation – or
try to write your own
first!

Given a set Φ of clauses:
DPLL(Φ)

if literals of Φ are consistent then
set atoms to make all literals true

else if Φ has an empty clause then
no satisfying assignment

else
make each one-literal clause true and simplify Φ to Φ′

set each pure literal true and simplify Φ′ to Φ′′

choose a remaining atom a
if DPLL(set a true; simplify Φ′′) succeeds then

return result
else

DPLL(set a false; simplify Φ′′)

The DPLL algorithm 11.2/14

See the book for a
Haskell
implementation – or
try to write your own
first!

Given a set Φ of clauses:
DPLL(Φ)

if literals of Φ are consistent then
set atoms to make all literals true

else if Φ has an empty clause then
no satisfying assignment

else
make each one-literal clause true and simplify Φ to Φ′

set each pure literal true and simplify Φ′ to Φ′′

choose a remaining atom a
if DPLL(set a true; simplify Φ′′) succeeds then

return result
else

DPLL(set a false; simplify Φ′′)

Toy application of CNF-SAT: Sudoku 12.1/14

This puzzle was
solved by the LATEX
package that printed
it. The solver is
1000 lines of LATEX,
and it isn’t doing
CNF-SAT.

Sudoku is a popular puzzle game.
I Given: a 9× 9 grid, divided into nine 3× 3 subgrids, with some

cells containing digits from 1 to 9
I Goal: complete the grid so that each row, each column, and

each subgrid contains all nine digits
4 8 3 7 2

1 2 8
5 2 1 3

6 2 9 1
7 5 9 3
9 4 7 8

3 9 7 4
5 6 1
8 4 6 9

6 9 4 8 3 5 1 7 2
3 1 2 6 7 4 5 8 9
8 7 5 2 9 1 3 6 4
5 3 8 4 6 2 7 9 1
7 2 6 5 1 9 8 4 3
9 4 1 7 8 3 2 5 6
1 6 3 9 5 7 4 2 8
4 5 9 3 2 8 6 1 7
2 8 7 1 4 6 9 3 5

Toy application of CNF-SAT: Sudoku 12.2/14

This puzzle was
solved by the LATEX
package that printed
it. The solver is
1000 lines of LATEX,
and it isn’t doing
CNF-SAT.

Sudoku is a popular puzzle game.
I Given: a 9× 9 grid, divided into nine 3× 3 subgrids, with some

cells containing digits from 1 to 9
I Goal: complete the grid so that each row, each column, and

each subgrid contains all nine digits
4 8 3 7 2

1 2 8
5 2 1 3

6 2 9 1
7 5 9 3
9 4 7 8

3 9 7 4
5 6 1
8 4 6 9

6 9 4 8 3 5 1 7 2
3 1 2 6 7 4 5 8 9
8 7 5 2 9 1 3 6 4
5 3 8 4 6 2 7 9 1
7 2 6 5 1 9 8 4 3
9 4 1 7 8 3 2 5 6
1 6 3 9 5 7 4 2 8
4 5 9 3 2 8 6 1 7
2 8 7 1 4 6 9 3 5

Sudoku expressed in logic 13.1/14

How do we express ‘cell (7,1) is filled with digit 4’?

We use one atom for every combination of row, column and digit!

Fijn where 1 ≤ i , j , n ≤ 9 means ‘cell (i , j) has n’

For readability we’ll write F (i , j , n) instead of Fijn.
We shall concoct CNF formulae for the rules of the solution, and for
the initial state, and try to satisfy the conjunction of these.

Sudoku expressed in logic 13.2/14

How do we express ‘cell (7,1) is filled with digit 4’?
We use one atom for every combination of row, column and digit!

Fijn where 1 ≤ i , j , n ≤ 9 means ‘cell (i , j) has n’

For readability we’ll write F (i , j , n) instead of Fijn.

We shall concoct CNF formulae for the rules of the solution, and for
the initial state, and try to satisfy the conjunction of these.

Sudoku expressed in logic 13.3/14

How do we express ‘cell (7,1) is filled with digit 4’?
We use one atom for every combination of row, column and digit!

Fijn where 1 ≤ i , j , n ≤ 9 means ‘cell (i , j) has n’

For readability we’ll write F (i , j , n) instead of Fijn.
We shall concoct CNF formulae for the rules of the solution, and for
the initial state, and try to satisfy the conjunction of these.

The Sudoku formulae 14.1/14

The formula for the
starting position is
easy: just conjoin all
the F (i , j , n) for
each digit n in
position (i , j).
For the details in
Haskell, see the
book and the
tutorial exercises.

All indices range over 1 . . . 9 unless given otherwise.

No cell is double-filled:∧
i ,j ,n,n′ 6=n

¬F (i , j , n) ∨ ¬F (i , j , n′)

Every row has each digit and every column has each digit:∧
i ,n

∨
j

F (i , j , n)
∧
j ,n

∨
i

F (i , j , n)

Every subgrid has each digit:∧
0≤a≤2,0≤b≤2,n

∨
3a+1≤i≤3a+3,3b+1≤j≤3b+3

F (i , j , n)

Other rules (used during solving): can’t have same digit twice in
row/column/subgrid.

The Sudoku formulae 14.2/14

The formula for the
starting position is
easy: just conjoin all
the F (i , j , n) for
each digit n in
position (i , j).
For the details in
Haskell, see the
book and the
tutorial exercises.

All indices range over 1 . . . 9 unless given otherwise.
No cell is double-filled:∧

i ,j ,n,n′ 6=n

¬F (i , j , n) ∨ ¬F (i , j , n′)

Every row has each digit and every column has each digit:∧
i ,n

∨
j

F (i , j , n)
∧
j ,n

∨
i

F (i , j , n)

Every subgrid has each digit:∧
0≤a≤2,0≤b≤2,n

∨
3a+1≤i≤3a+3,3b+1≤j≤3b+3

F (i , j , n)

Other rules (used during solving): can’t have same digit twice in
row/column/subgrid.

The Sudoku formulae 14.3/14

The formula for the
starting position is
easy: just conjoin all
the F (i , j , n) for
each digit n in
position (i , j).
For the details in
Haskell, see the
book and the
tutorial exercises.

All indices range over 1 . . . 9 unless given otherwise.
No cell is double-filled:∧

i ,j ,n,n′ 6=n

¬F (i , j , n) ∨ ¬F (i , j , n′)

Every row has each digit and every column has each digit:∧
i ,n

∨
j

F (i , j , n)
∧
j ,n

∨
i

F (i , j , n)

Every subgrid has each digit:∧
0≤a≤2,0≤b≤2,n

∨
3a+1≤i≤3a+3,3b+1≤j≤3b+3

F (i , j , n)

Other rules (used during solving): can’t have same digit twice in
row/column/subgrid.

The Sudoku formulae 14.4/14

The formula for the
starting position is
easy: just conjoin all
the F (i , j , n) for
each digit n in
position (i , j).
For the details in
Haskell, see the
book and the
tutorial exercises.

All indices range over 1 . . . 9 unless given otherwise.
No cell is double-filled:∧

i ,j ,n,n′ 6=n

¬F (i , j , n) ∨ ¬F (i , j , n′)

Every row has each digit and every column has each digit:∧
i ,n

∨
j

F (i , j , n)
∧
j ,n

∨
i

F (i , j , n)

Every subgrid has each digit:∧
0≤a≤2,0≤b≤2,n

∨
3a+1≤i≤3a+3,3b+1≤j≤3b+3

F (i , j , n)

Other rules (used during solving): can’t have same digit twice in
row/column/subgrid.

The Sudoku formulae 14.5/14

The formula for the
starting position is
easy: just conjoin all
the F (i , j , n) for
each digit n in
position (i , j).
For the details in
Haskell, see the
book and the
tutorial exercises.

All indices range over 1 . . . 9 unless given otherwise.
No cell is double-filled:∧

i ,j ,n,n′ 6=n

¬F (i , j , n) ∨ ¬F (i , j , n′)

Every row has each digit and every column has each digit:∧
i ,n

∨
j

F (i , j , n)
∧
j ,n

∨
i

F (i , j , n)

Every subgrid has each digit:∧
0≤a≤2,0≤b≤2,n

∨
3a+1≤i≤3a+3,3b+1≤j≤3b+3

F (i , j , n)

Other rules (used during solving): can’t have same digit twice in
row/column/subgrid.

The Sudoku formulae 14.6/14

The formula for the
starting position is
easy: just conjoin all
the F (i , j , n) for
each digit n in
position (i , j).
For the details in
Haskell, see the
book and the
tutorial exercises.

All indices range over 1 . . . 9 unless given otherwise.
No cell is double-filled:∧

i ,j ,n,n′ 6=n

¬F (i , j , n) ∨ ¬F (i , j , n′)

Every row has each digit and every column has each digit:∧
i ,n

∨
j

F (i , j , n)
∧
j ,n

∨
i

F (i , j , n)

Every subgrid has each digit:∧
0≤a≤2,0≤b≤2,n

∨
3a+1≤i≤3a+3,3b+1≤j≤3b+3

F (i , j , n)

Other rules (used during solving): can’t have same digit twice in
row/column/subgrid.

