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Very Simple Computers 2.1/16

We’re going to switch tack, and start looking at more physical
models of computation: computation as machinery, rather than
computation as logic.
We’ll start with the simplest model of computation we can devise:

I the machine will just move from one state to another,

I and there are finitely many states.
I Which state we move to depends on input: a symbol drawn

from a finite alphabet.
I Some states are accepting: if the machine is there at end of

input, that’s good, otherwise it’s bad.
I There’s an identified start state.

These (give or take a technicality) are Finite Automata, or Finite
State Machines.
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Applications 3.1/16

FA have countless applications:

I washing machine/central heating/etc. controllers
I traffic light controllers
I parsing programming languages
I CPU controllers
I natural language processing
I . . .

Is your laptop a finite automaton? Is anything not a finite
automaton?
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We often think about FAs by drawing them:
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The circles are the states, with their names: the set of states is
{0, 1}.
The connecting arrows are the transitions, with the input letter that
activates them: the input alphabet is {a, b}.
The short arrow marks the initial or start state.
This machine reads b until it reads an a, after which it reads a or b
for ever.
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If we feed the machine ab:

I in state 0, a fires the right transition and the state changes to 1
I then from state 1, b fires the top transition and the state

remains 1
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On input babaaba we see:

ending up in an accepting state.
We say that the automata has accepted the string babaaba.
If the automaton ends in a non-accepting state, it has rejected the
string. Verify for yourself that this automaton rejects babbaa.
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What input strings does this automaton accept?

Any number of bs then an a and any number of bs, then optionally
an a and any number of bs, then two as followed by everything all
over again.
That’s a little hard to understand: we will see later how to turn this
into a precise description.
If instead we think about it, we see: the state labels 0, 1, 2 count
how many as we have seen, modulo 3. The automaton accepts any
string of as and bs where the number of as is not a multiple of 3.
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b, c
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a, b, c

Writing multiple labels a, c is shorthand for an a-transition and a
c-transition.

The bottom state is a black hole state: once there, the machine
never leaves.
The black hole convention says that if you don’t write a transition
for letter a from state q, there is an implicit a-transition from q to a
non-accepting black hole state.
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at most one
transition, if we use
the black hole
convention

So far, our automata have had

I a single start state
I exactly one transition from each state for each input letter

Such automata are called deterministic, because their next move is
fully determined by the input letter. Later, we’ll see
non-deterministic automata, but for now we stick with DFAs.
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The use of F for
‘final’ states is
traditional.

There are several ways to mathematize DFAs. Here’s one:
A DFA comprises:

I A finite set Q of states
I A finite alphabet Σ of input letters
I A transition function δ : Q ×Σ → Q

I A starting state q0 ∈ Q

I A subset F ⊆ Q of accepting (or final) states
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If you already know
about regular
expressions, can you
describe this
language by a
regexp?

The states of a DFA are its memory. Using this fact is the easiest
way to construct a DFA: first think about the states, then the
transitions. Example:

Build a DFA over the alphabet {0, 1} that accepts strings with an
even number of zeros and an odd number of ones.
We need to track two bits of information: have we seen even/odd
numbers of zeros/ones. One bit needs two states, two bits needs
four states. So:

Q = {E0E1,E0O1,O0E1,O0O1 }

Initially, we’ve read nothing: q0 = E0E1

The accepting set is just F = {E0O1 }.
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Writing it in symbols rather than diagrams:
Q = {E0E1,E0O1,O0E1,O0O1 }
q0 = E0E1

F = {E0O1 }
δ is the following table:

0 1
E0E1 O0E1 E0O1
E0O1 O0O1 E0E1
O0E1 E0E1 O0O1
O0O1 E0O1 O0E1

The book shows how bad things can get if you just try to work from
an initial state by following your nose!
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We’ll use some lazy
conventions on
slides: M is
Q, Σ, δ, q0,F , and
M ′ is
Q ′, Σ′, δ′, q′0,F

′

unless otherwise
stated. Similarly
M ′′,M1,M2 etc.

We need a few notations and terms to talk more about DFAs:

I for any set Σ, Σ∗ is the set of strings over Σ. The empty
string is written ε. If s ∈ Σ∗ and x ∈ Σ, then xs is the string
comprising x followed by s.

I If δ : Q ×Σ → Q is the transition function, then
δ∗ : Q ×Σ∗ → Q is the string transition function defined by
δ∗(q, ε) = q and δ∗(q, xs) = δ∗(δ(q, x), s)

I If Σ∗ 3 s = a1 . . . an, the trace of s is the sequence q0 . . . qn
where q0

a1→ q1
a2→ . . .

an→ qn.
I The language accepted by M is

L(M) = {s ∈ Σ∗ : δ∗(q0, s) ∈ F}.
I A language L ⊆ Σ∗ is regular iff there is some DFA M over Σ

that accepts L.
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Building up automata: complement 14.1/16

There are two
common notations
for set difference:
A− B and A \ B.
They mean
{x ∈ A : x /∈ B}.

We must remember
to include any black
hole states that
weren’t drawn!
The term closed
under . . . is
common in algebra.
Be sure to
understand it.

We can use automata as building blocks in others (as we build
formulae out of formulae. . . ).
Start with complement: if M accepts L, how do we build a machine
that accepts L = Σ∗ − L ?

Easy: swap accepting and rejecting states:

I The complement of M = (Q, Σ, δ, q0,F ) is
M = (Q, Σ, δ, q0,Q − F ).

Hence we know that the set of regular languages is closed under
complement.
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Building up automata: complement 14.3/16

There are two
common notations
for set difference:
A− B and A \ B.
They mean
{x ∈ A : x /∈ B}.
We must remember
to include any black
hole states that
weren’t drawn!
The term closed
under . . . is
common in algebra.
Be sure to
understand it.

We can use automata as building blocks in others (as we build
formulae out of formulae. . . ).
Start with complement: if M accepts L, how do we build a machine
that accepts L = Σ∗ − L ?
Easy: swap accepting and rejecting states:

I The complement of M = (Q, Σ, δ, q0,F ) is
M = (Q, Σ, δ, q0,Q − F ).

Hence we know that the set of regular languages is closed under
complement.



Building up automata: product 15.1/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?

It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.2/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.3/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.4/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.5/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.6/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.7/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.8/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: product 15.9/16

Notice that we can
run M and M ′ in
parallel without ever
constructing all of
M ×M ′. This is on
the fly construction.
Unfortunately, many
things do need the
whole automaton.

even number of 0s
odd number of 1s
even 0s and odd 1s

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∩ L′ ?
It’s a bit trickier, but yes: we need somehow to feed input to M and
M ′ at the same time.

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The product M ×M ′ is (Q × Q ′, Σ, δ′′, (q0, q
′
0),F × F ′) where

δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).
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Building up automata: sum 16.1/16

Later we will see a
different sum for
other automata. I’ll
write this one as +d
(d for deterministic).

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∪ L′ ?

Yes, with almost the same construction:

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The sum M +d M
′ is (Q ×Q ′, Σ, δ′′, (q0, q

′
0),Q × F ′ ∪ F ×Q ′)

where δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).

The difference is the accepting states: we accept if either
component accepts. Hence L(M +d M

′) = L(M) ∪ L(M ′).
Q × F ′ ∪ F × Q ′ can also be written as
(Q × Q ′)− ((Q − F )× (Q ′ − F ′)) which we can notate F × F ′.
Does this remind you of something?
So now we know regular languages are closed under complement,
intersection, and union.



Building up automata: sum 16.2/16

Later we will see a
different sum for
other automata. I’ll
write this one as +d
(d for deterministic).

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∪ L′ ?
Yes, with almost the same construction:

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The sum M +d M
′ is (Q ×Q ′, Σ, δ′′, (q0, q

′
0),Q × F ′ ∪ F ×Q ′)

where δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).

The difference is the accepting states: we accept if either
component accepts. Hence L(M +d M

′) = L(M) ∪ L(M ′).

Q × F ′ ∪ F × Q ′ can also be written as
(Q × Q ′)− ((Q − F )× (Q ′ − F ′)) which we can notate F × F ′.
Does this remind you of something?
So now we know regular languages are closed under complement,
intersection, and union.



Building up automata: sum 16.3/16

Later we will see a
different sum for
other automata. I’ll
write this one as +d
(d for deterministic).

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∪ L′ ?
Yes, with almost the same construction:

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The sum M +d M
′ is (Q ×Q ′, Σ, δ′′, (q0, q

′
0),Q × F ′ ∪ F ×Q ′)

where δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).

The difference is the accepting states: we accept if either
component accepts. Hence L(M +d M

′) = L(M) ∪ L(M ′).
Q × F ′ ∪ F × Q ′ can also be written as
(Q × Q ′)− ((Q − F )× (Q ′ − F ′)) which we can notate F × F ′.
Does this remind you of something?

So now we know regular languages are closed under complement,
intersection, and union.



Building up automata: sum 16.4/16

Later we will see a
different sum for
other automata. I’ll
write this one as +d
(d for deterministic).

What about black
hole states?

If M,M ′ accept L, L′, can we make something accepting L ∪ L′ ?
Yes, with almost the same construction:

I Let M = (Q, Σ, δ, q0,F ), and M ′ = (Q ′, Σ, δ′, q′0,F
′).

The sum M +d M
′ is (Q ×Q ′, Σ, δ′′, (q0, q

′
0),Q × F ′ ∪ F ×Q ′)

where δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).

The difference is the accepting states: we accept if either
component accepts. Hence L(M +d M

′) = L(M) ∪ L(M ′).
Q × F ′ ∪ F × Q ′ can also be written as
(Q × Q ′)− ((Q − F )× (Q ′ − F ′)) which we can notate F × F ′.
Does this remind you of something?
So now we know regular languages are closed under complement,
intersection, and union.


