
Michael Rabin, 1931–

Dana Scott, 1932–

Informatics 1 – Introduction to Computation
Computation and Logic

Julian Bradfield
based on materials by
Michael P. Fourman

Non-determinism
and Regular Expressions

Another way of summing 2.5/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . . as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Another way of summing 2.6/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . . as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Another way of summing 2.7/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . . as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Another way of summing 2.8/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . . as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Another way of summing 2.9/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . . as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Another way of summing 2.10/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . .

as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Another way of summing 2.11/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . . as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Another way of summing 2.12/23

Wouldn’t it be nice
if instead of building
the product, we just
ran the components
independently . . . as
we just did!

Recall the sum construction from last week: it was the product
automaton except with states accepting if either component is
accepting:

E0

O0

E1 O10

1

0

1 0

1

1

0

010

+d =

E0E1 E0O1

O0E1 O0O1

0

1

0

1

0

1

0

1

But this isn’t a DFA – so what is it?

Non-determinism 3.1/23

The book chooses to
define DFA like this
with the added
constraints ‘S is a
singleton’ and ‘δ is
functional’. It’s a
matter of taste.

A non-deterministic finite automaton (NFA) may have:

I any number of start states
I any number of transitions for each letter from each state

Formally: An NFA comprises:

I A finite set Q of states
I A finite alphabet Σ of input letters
I A transition relation δ ⊆ Q ×Σ × Q

I A set of starting states S ⊆ Q

I A subset F ⊆ Q of accepting (or final) states

Note that we no longer need the black hole convention: we just
omit unwanted transitions

Non-determinism 3.2/23

The book chooses to
define DFA like this
with the added
constraints ‘S is a
singleton’ and ‘δ is
functional’. It’s a
matter of taste.

A non-deterministic finite automaton (NFA) may have:

I any number of start states
I any number of transitions for each letter from each state

Formally: An NFA comprises:

I A finite set Q of states
I A finite alphabet Σ of input letters
I A transition relation δ ⊆ Q ×Σ × Q

I A set of starting states S ⊆ Q

I A subset F ⊆ Q of accepting (or final) states

Note that we no longer need the black hole convention: we just
omit unwanted transitions

Non-determinism 3.3/23

The book chooses to
define DFA like this
with the added
constraints ‘S is a
singleton’ and ‘δ is
functional’. It’s a
matter of taste.

A non-deterministic finite automaton (NFA) may have:

I any number of start states
I any number of transitions for each letter from each state

Formally: An NFA comprises:

I A finite set Q of states
I A finite alphabet Σ of input letters
I A transition relation δ ⊆ Q ×Σ × Q

I A set of starting states S ⊆ Q

I A subset F ⊆ Q of accepting (or final) states

Note that we no longer need the black hole convention: we just
omit unwanted transitions

NFA behaviour – parallel understanding 4.1/23

An NFA may have many active/current states:

I all the start states are initially active

I whenever q is active, if input a occurs, then all q′ : q a→ q′

become active instead of q (hence if there is no such q′, the
‘activity token’ on q dies).

I at end of input, the NFA accepts if any active state is accepting

That’s what we saw when we evolved the sum construction in terms
of the two components.
How much memory do we need to run an NFA like this?
One bit for each state. With a DFA we need lg n bits to track the
single current state. So running an NFA requires exponentially more
memory than a DFA.

NFA behaviour – parallel understanding 4.2/23

An NFA may have many active/current states:

I all the start states are initially active
I whenever q is active, if input a occurs, then all q′ : q a→ q′

become active instead of q (hence if there is no such q′, the
‘activity token’ on q dies).

I at end of input, the NFA accepts if any active state is accepting

That’s what we saw when we evolved the sum construction in terms
of the two components.
How much memory do we need to run an NFA like this?
One bit for each state. With a DFA we need lg n bits to track the
single current state. So running an NFA requires exponentially more
memory than a DFA.

NFA behaviour – parallel understanding 4.3/23

An NFA may have many active/current states:

I all the start states are initially active
I whenever q is active, if input a occurs, then all q′ : q a→ q′

become active instead of q (hence if there is no such q′, the
‘activity token’ on q dies).

I at end of input, the NFA accepts if any active state is accepting

That’s what we saw when we evolved the sum construction in terms
of the two components.
How much memory do we need to run an NFA like this?
One bit for each state. With a DFA we need lg n bits to track the
single current state. So running an NFA requires exponentially more
memory than a DFA.

NFA behaviour – parallel understanding 4.4/23

An NFA may have many active/current states:

I all the start states are initially active
I whenever q is active, if input a occurs, then all q′ : q a→ q′

become active instead of q (hence if there is no such q′, the
‘activity token’ on q dies).

I at end of input, the NFA accepts if any active state is accepting

That’s what we saw when we evolved the sum construction in terms
of the two components.

How much memory do we need to run an NFA like this?
One bit for each state. With a DFA we need lg n bits to track the
single current state. So running an NFA requires exponentially more
memory than a DFA.

NFA behaviour – parallel understanding 4.5/23

An NFA may have many active/current states:

I all the start states are initially active
I whenever q is active, if input a occurs, then all q′ : q a→ q′

become active instead of q (hence if there is no such q′, the
‘activity token’ on q dies).

I at end of input, the NFA accepts if any active state is accepting

That’s what we saw when we evolved the sum construction in terms
of the two components.
How much memory do we need to run an NFA like this?

One bit for each state. With a DFA we need lg n bits to track the
single current state. So running an NFA requires exponentially more
memory than a DFA.

NFA behaviour – parallel understanding 4.6/23

An NFA may have many active/current states:

I all the start states are initially active
I whenever q is active, if input a occurs, then all q′ : q a→ q′

become active instead of q (hence if there is no such q′, the
‘activity token’ on q dies).

I at end of input, the NFA accepts if any active state is accepting

That’s what we saw when we evolved the sum construction in terms
of the two components.
How much memory do we need to run an NFA like this?
One bit for each state. With a DFA we need lg n bits to track the
single current state.

So running an NFA requires exponentially more
memory than a DFA.

NFA behaviour – parallel understanding 4.7/23

An NFA may have many active/current states:

I all the start states are initially active
I whenever q is active, if input a occurs, then all q′ : q a→ q′

become active instead of q (hence if there is no such q′, the
‘activity token’ on q dies).

I at end of input, the NFA accepts if any active state is accepting

That’s what we saw when we evolved the sum construction in terms
of the two components.
How much memory do we need to run an NFA like this?
One bit for each state. With a DFA we need lg n bits to track the
single current state. So running an NFA requires exponentially more
memory than a DFA.

NFA behaviour – non-deterministic understanding(?) 5.1/23

Another way to
think is: if a magic
oracle tells you
which way to go at
each choice, strings
in the language are
accepted. This way
of thinking makes
more sense at higher
levels of complexity
than FSMs.

I At the beginning, the machine guesses/chooses a start state
out of S . Then it behaves like a DFA, except that:

I If at state q and input a there is more than one transition
q

a→ , then the machine guesses/chooses which one to follow;
if there is none, the machine dies (rejects regardless of the rest
of the input).

I If some sequence of guesses for a given input string leads to an
accepting state, the string is accepted.

This notion of guess/choice is theoretical: it is not physically
realizable. In particular, it is not probabilistic or chance choice, and
it is not quantum anything.

NFA behaviour – non-deterministic understanding(?) 5.2/23

Another way to
think is: if a magic
oracle tells you
which way to go at
each choice, strings
in the language are
accepted. This way
of thinking makes
more sense at higher
levels of complexity
than FSMs.

I At the beginning, the machine guesses/chooses a start state
out of S . Then it behaves like a DFA, except that:

I If at state q and input a there is more than one transition
q

a→ , then the machine guesses/chooses which one to follow;
if there is none, the machine dies (rejects regardless of the rest
of the input).

I If some sequence of guesses for a given input string leads to an
accepting state, the string is accepted.

This notion of guess/choice is theoretical: it is not physically
realizable. In particular, it is not probabilistic or chance choice, and
it is not quantum anything.

NFA behaviour – non-deterministic understanding(?) 5.3/23

Another way to
think is: if a magic
oracle tells you
which way to go at
each choice, strings
in the language are
accepted. This way
of thinking makes
more sense at higher
levels of complexity
than FSMs.

I At the beginning, the machine guesses/chooses a start state
out of S . Then it behaves like a DFA, except that:

I If at state q and input a there is more than one transition
q

a→ , then the machine guesses/chooses which one to follow;
if there is none, the machine dies (rejects regardless of the rest
of the input).

I If some sequence of guesses for a given input string leads to an
accepting state, the string is accepted.

This notion of guess/choice is theoretical: it is not physically
realizable. In particular, it is not probabilistic or chance choice, and
it is not quantum anything.

NFA behaviour – non-deterministic understanding(?) 5.4/23

Another way to
think is: if a magic
oracle tells you
which way to go at
each choice, strings
in the language are
accepted. This way
of thinking makes
more sense at higher
levels of complexity
than FSMs.

I At the beginning, the machine guesses/chooses a start state
out of S . Then it behaves like a DFA, except that:

I If at state q and input a there is more than one transition
q

a→ , then the machine guesses/chooses which one to follow;
if there is none, the machine dies (rejects regardless of the rest
of the input).

I If some sequence of guesses for a given input string leads to an
accepting state, the string is accepted.

This notion of guess/choice is theoretical: it is not physically
realizable. In particular, it is not probabilistic or chance choice, and
it is not quantum anything.

Using NFAs 6.1/23

Why do we want to use NFAs?

Some problems are (much) easier to build NFAs for than DFAs for.
Consider L the language of strings over {a, b} that end in ab.
Here is a DFA for L:

And here is an NFA:

0

b

1
a

a

2
b

a

b

0

a, b

1
a

2
b

Using NFAs 6.2/23

Why do we want to use NFAs?
Some problems are (much) easier to build NFAs for than DFAs for.

Consider L the language of strings over {a, b} that end in ab.
Here is a DFA for L:

And here is an NFA:

0

b

1
a

a

2
b

a

b

0

a, b

1
a

2
b

Using NFAs 6.3/23

Why do we want to use NFAs?
Some problems are (much) easier to build NFAs for than DFAs for.
Consider L the language of strings over {a, b} that end in ab.

Here is a DFA for L:

And here is an NFA:

0

b

1
a

a

2
b

a

b

0

a, b

1
a

2
b

Using NFAs 6.4/23

Why do we want to use NFAs?
Some problems are (much) easier to build NFAs for than DFAs for.
Consider L the language of strings over {a, b} that end in ab.
Here is a DFA for L:

And here is an NFA:

0

b

1
a

a

2
b

a

b

0

a, b

1
a

2
b

Using NFAs 6.5/23

Why do we want to use NFAs?
Some problems are (much) easier to build NFAs for than DFAs for.
Consider L the language of strings over {a, b} that end in ab.
Here is a DFA for L: And here is an NFA:

0

b

1
a

a

2
b

a

b

0

a, b

1
a

2
b

More formalism 7.1/23

Here again I am
differing slightly
from the book.
Examine the two
sets of definitions
carefully. De
gustibus non est
disputandum!

We extend some notations and terms to talk about NFAs:

I If δ ⊆ Q ×Σ × Q is the transition relation, then
δ̂ : ℘(Q)×Σ → ℘(Q) is the state set transition function
defined by δ̂(Q̂, a) =

⋃
q∈Q̂{q

′ : δ(q, a, q′)}, and

I δ̂∗ : ℘(Q)×Σ∗ → ℘(Q) is the string transition function
defined by δ̂∗(Q̂, ε) = Q̂ and δ̂∗(Q̂, xs) = δ̂∗(δ̂(Q̂, x), s)

I If Σ∗ 3 s = a1 . . . an, the trace of s is the sequence Q0 . . .Qn

where Q0 = S and Qi+1 = δ∗(Qi , ai)

I The language accepted by M is
L(M) = {s ∈ Σ∗ : δ̂∗(S , s) ∩ F 6= ∅}.

I Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA
M over Σ that accepts L.

More formalism 7.2/23

Here again I am
differing slightly
from the book.
Examine the two
sets of definitions
carefully. De
gustibus non est
disputandum!

We extend some notations and terms to talk about NFAs:

I If δ ⊆ Q ×Σ × Q is the transition relation, then
δ̂ : ℘(Q)×Σ → ℘(Q) is the state set transition function
defined by δ̂(Q̂, a) =

⋃
q∈Q̂{q

′ : δ(q, a, q′)}, and
I δ̂∗ : ℘(Q)×Σ∗ → ℘(Q) is the string transition function

defined by δ̂∗(Q̂, ε) = Q̂ and δ̂∗(Q̂, xs) = δ̂∗(δ̂(Q̂, x), s)

I If Σ∗ 3 s = a1 . . . an, the trace of s is the sequence Q0 . . .Qn

where Q0 = S and Qi+1 = δ∗(Qi , ai)

I The language accepted by M is
L(M) = {s ∈ Σ∗ : δ̂∗(S , s) ∩ F 6= ∅}.

I Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA
M over Σ that accepts L.

More formalism 7.3/23

Here again I am
differing slightly
from the book.
Examine the two
sets of definitions
carefully. De
gustibus non est
disputandum!

We extend some notations and terms to talk about NFAs:

I If δ ⊆ Q ×Σ × Q is the transition relation, then
δ̂ : ℘(Q)×Σ → ℘(Q) is the state set transition function
defined by δ̂(Q̂, a) =

⋃
q∈Q̂{q

′ : δ(q, a, q′)}, and
I δ̂∗ : ℘(Q)×Σ∗ → ℘(Q) is the string transition function

defined by δ̂∗(Q̂, ε) = Q̂ and δ̂∗(Q̂, xs) = δ̂∗(δ̂(Q̂, x), s)
I If Σ∗ 3 s = a1 . . . an, the trace of s is the sequence Q0 . . .Qn

where Q0 = S and Qi+1 = δ∗(Qi , ai)

I The language accepted by M is
L(M) = {s ∈ Σ∗ : δ̂∗(S , s) ∩ F 6= ∅}.

I Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA
M over Σ that accepts L.

More formalism 7.4/23

Here again I am
differing slightly
from the book.
Examine the two
sets of definitions
carefully. De
gustibus non est
disputandum!

We extend some notations and terms to talk about NFAs:

I If δ ⊆ Q ×Σ × Q is the transition relation, then
δ̂ : ℘(Q)×Σ → ℘(Q) is the state set transition function
defined by δ̂(Q̂, a) =

⋃
q∈Q̂{q

′ : δ(q, a, q′)}, and
I δ̂∗ : ℘(Q)×Σ∗ → ℘(Q) is the string transition function

defined by δ̂∗(Q̂, ε) = Q̂ and δ̂∗(Q̂, xs) = δ̂∗(δ̂(Q̂, x), s)
I If Σ∗ 3 s = a1 . . . an, the trace of s is the sequence Q0 . . .Qn

where Q0 = S and Qi+1 = δ∗(Qi , ai)

I The language accepted by M is
L(M) = {s ∈ Σ∗ : δ̂∗(S , s) ∩ F 6= ∅}.

I Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA
M over Σ that accepts L.

More formalism 7.5/23

Here again I am
differing slightly
from the book.
Examine the two
sets of definitions
carefully. De
gustibus non est
disputandum!

We extend some notations and terms to talk about NFAs:

I If δ ⊆ Q ×Σ × Q is the transition relation, then
δ̂ : ℘(Q)×Σ → ℘(Q) is the state set transition function
defined by δ̂(Q̂, a) =

⋃
q∈Q̂{q

′ : δ(q, a, q′)}, and
I δ̂∗ : ℘(Q)×Σ∗ → ℘(Q) is the string transition function

defined by δ̂∗(Q̂, ε) = Q̂ and δ̂∗(Q̂, xs) = δ̂∗(δ̂(Q̂, x), s)
I If Σ∗ 3 s = a1 . . . an, the trace of s is the sequence Q0 . . .Qn

where Q0 = S and Qi+1 = δ∗(Qi , ai)

I The language accepted by M is
L(M) = {s ∈ Σ∗ : δ̂∗(S , s) ∩ F 6= ∅}.

I Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA
M over Σ that accepts L.

NFAs = DFAs 8.1/23

I just said:
Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA M
over Σ that accepts L.

So NFAs don’t give us anything more than DFAs. How can this be?
Theorem: For any NFA, we can build a DFA that accepts the same
language.
And it’s easy – in fact, we’ve already seen how it’s done.

NFAs = DFAs 8.2/23

I just said:
Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA M
over Σ that accepts L.
So NFAs don’t give us anything more than DFAs. How can this be?

Theorem: For any NFA, we can build a DFA that accepts the same
language.
And it’s easy – in fact, we’ve already seen how it’s done.

NFAs = DFAs 8.3/23

I just said:
Theorem: A language L ⊆ Σ∗ is regular iff there is some NFA M
over Σ that accepts L.
So NFAs don’t give us anything more than DFAs. How can this be?
Theorem: For any NFA, we can build a DFA that accepts the same
language.
And it’s easy – in fact, we’ve already seen how it’s done.

The subset construction 9.1/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1} {E0,O1}

{O0,E1} {O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 9.2/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1} {E0,O1}

{O0,E1} {O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 9.3/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1}

{E0,O1}

{O0,E1} {O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 9.4/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1}

{E0,O1}

{O0,E1} {O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 9.5/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1}

{E0,O1}

{O0,E1}

{O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 9.6/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1} {E0,O1}

{O0,E1}

{O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 9.7/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1} {E0,O1}

{O0,E1}

{O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 9.8/23

Here’s an NFA with two start states:

E0

O0

E1 O10

1

0

1 0

1

1

0

{E0,E1} {E0,O1}

{O0,E1} {O0,O1}

0

1

0

1

0

1

0

1

We’ll build a DFA just by tracking which NFA states are active and
how that changes by transitions in the ‘parallel’ run.

The subset construction 10.1/23

Another example from earlier, with non-det transitions:

0

a, b

1
a

2
b

{0}

b

{0, 1}

a

a {0, 2}b

a

b

The subset construction 10.2/23

Another example from earlier, with non-det transitions:

0

a, b

1
a

2
b

{0}

b

{0, 1}

a

a {0, 2}b

a

b

If a happens, 0 stays active and activates 1. If b happens, 0 just stays
active.

The subset construction 10.3/23

Another example from earlier, with non-det transitions:

0

a, b

1
a

2
b {0}

b

{0, 1}

a

a

{0, 2}b

a

b

If a happens, 0 stays active and activates 1. If b happens, 0 just stays
active.

The subset construction 10.4/23

Another example from earlier, with non-det transitions:

0

a, b

1
a

2
b {0}

b

{0, 1}

a

a {0, 2}
b

a

b

If a happens:
I There’s no a-transition from 1, so 1 dies.
I But 0 stays active and (re-)activates 1.

If b happens, 0 stays active and the activity on 1 moves to 2.

The subset construction 10.5/23

Another example from earlier, with non-det transitions:

0

a, b

1
a

2
b {0}

b

{0, 1}

a

a {0, 2}b

a

b

If a happens:
I There’s no a-transition from 2, so it dies.
I 0 stays active and activates 1.

If b happens:
I There’s no b-transition from 2, so it dies.
I 0 stays active.

The subset construction 10.6/23

Another example from earlier, with non-det transitions:

0

a, b

1
a

2
b {0}

b

{0, 1}

a

a {0, 2}b

a

b

We have reconstructed the original DFA from slide 6! This is a happy
coincidence.

The subset construction, formally 11.1/23

It’s always annoyed
me that we have to
write A ∩ B 6= ∅ to
say that A and B
overlap. Somebody
on reddit suggests
A ⊃⊂ B. What do
you think?

What we’ve seen is a dynamic or on-the-fly construction of a DFA.
If we do it mathematically, at one fell swoop, it looks like this:
Given NFA M = (Q, Σ, δ,S ,F), define DFA M̂ by:

I M̂ = (℘(Q), Σ, δ̂, S ,F) where:

I δ̂ is the state set transition function (slide 7) and
I F = {Q ′ ⊆ Q : Q ′ ∩ F 6= ∅}

In many cases, most of the superstates in ℘(Q) can’t be reached
from the starting superstate S , so on-the-fly construction is almost
always the right thing in practice.
Now convince yourself (using the book if necessary) that
L(M) = L(M̂).

The subset construction, formally 11.2/23

It’s always annoyed
me that we have to
write A ∩ B 6= ∅ to
say that A and B
overlap. Somebody
on reddit suggests
A ⊃⊂ B. What do
you think?

What we’ve seen is a dynamic or on-the-fly construction of a DFA.
If we do it mathematically, at one fell swoop, it looks like this:
Given NFA M = (Q, Σ, δ,S ,F), define DFA M̂ by:

I M̂ = (℘(Q), Σ, δ̂, S ,F) where:
I δ̂ is the state set transition function (slide 7) and

I F = {Q ′ ⊆ Q : Q ′ ∩ F 6= ∅}
In many cases, most of the superstates in ℘(Q) can’t be reached
from the starting superstate S , so on-the-fly construction is almost
always the right thing in practice.
Now convince yourself (using the book if necessary) that
L(M) = L(M̂).

The subset construction, formally 11.3/23

It’s always annoyed
me that we have to
write A ∩ B 6= ∅ to
say that A and B
overlap. Somebody
on reddit suggests
A ⊃⊂ B. What do
you think?

What we’ve seen is a dynamic or on-the-fly construction of a DFA.
If we do it mathematically, at one fell swoop, it looks like this:
Given NFA M = (Q, Σ, δ,S ,F), define DFA M̂ by:

I M̂ = (℘(Q), Σ, δ̂, S ,F) where:
I δ̂ is the state set transition function (slide 7) and
I F = {Q ′ ⊆ Q : Q ′ ∩ F 6= ∅}

In many cases, most of the superstates in ℘(Q) can’t be reached
from the starting superstate S , so on-the-fly construction is almost
always the right thing in practice.
Now convince yourself (using the book if necessary) that
L(M) = L(M̂).

ε-NFAs 12.1/23

The Greek letter
lower-case epsilon
has two common
forms: standard ε
and lunate ε. I like
to use ε for the
empty string, and ε
for the silent
transition, but that’s
just me . . .

In practice, it’s very useful to have a slightly extended notion of
NFA.
An ε-NFA is an NFA which has an additional special symbol ε /∈ Σ,
and a transition relation δ ⊆ Q × (Σ ∪ {ε})× Q.
If q ε→ q′, then the machine can move from q to q′ without reading
any input.
This makes it much easier to concatenate machines or build loops.
(We’ll see examples later.)
Everything we’ve done can be adjusted to ε-NFAs with a little work
– see the book for details. In particular, the subset construction still
works. (Read the book section on this, p. 331–3 on the draft pdf.)

Building (ε-)NFAs: complement and product 13.1/23

The product construction works on NFAs just as it does on DFAs
(with a little work for ε).

Complement does not work: an NFA accepts if any run leads to F ,
so its complement would have to accept only if all runs lead to
Q − F , and that’s not an NFA.
To complement an NFA, first convert to DFA and then complement:
exponential blow-up in states.

Building (ε-)NFAs: complement and product 13.2/23

The product construction works on NFAs just as it does on DFAs
(with a little work for ε).
Complement does not work: an NFA accepts if any run leads to F ,
so its complement would have to accept only if all runs lead to
Q − F , and that’s not an NFA.

To complement an NFA, first convert to DFA and then complement:
exponential blow-up in states.

Building (ε-)NFAs: complement and product 13.3/23

The product construction works on NFAs just as it does on DFAs
(with a little work for ε).
Complement does not work: an NFA accepts if any run leads to F ,
so its complement would have to accept only if all runs lead to
Q − F , and that’s not an NFA.
To complement an NFA, first convert to DFA and then complement:
exponential blow-up in states.

Building (ε-)NFAs: sum 14.1/23

Some people write
M +M ′, some
M ∪M ′.

In compensation, the sum or union becomes much easier:

I Let M = (Q, Σ, δ,S ,F), and M ′ = (Q ′, Σ, δ′, S ′,F ′), where
Q ∩ Q ′ = ∅.

I The sum is M +M ′ = (Q ∪ Q ′, Σ, δ ∪ δ′,S ∪ S ′,F ∪ F ′).

In other words, just put the two automata side by side, as we did at
the beginning of this week.

Building ε-NFAs: concatenation 15.1/23

Hence we know
regular languages are
closed under
concatenation.

The big win from ε is concatenation:
Given L = L(M) and L′ = L(M ′), can we build a machine that
accepts LL′ = {ss ′ : s ∈ L, s ′ ∈ L′} ?

I The concatenation of M and M ′ (where Σ′ = Σ and
Q ∩ Q ′ = ∅) is MM ′ = (Q ∪ Q ′, Σ, δ ∪ δ′ ∪ δ′′,S ,F ′),
where δ′′ = {(q, ε, q′) : q ∈ F , q′ ∈ S ′}.

In other words, put M and M ′ side by side, and connect the end of
M to the start of M ′ with ε transitions.

0

1 2

3 4

a

a

b

b

a, b

a, b
0′

a, b

1′
a

2′
b

ε

ε

Building ε-NFAs: concatenation 15.2/23

Hence we know
regular languages are
closed under
concatenation.

The big win from ε is concatenation:
Given L = L(M) and L′ = L(M ′), can we build a machine that
accepts LL′ = {ss ′ : s ∈ L, s ′ ∈ L′} ?
I The concatenation of M and M ′ (where Σ′ = Σ and

Q ∩ Q ′ = ∅) is MM ′ = (Q ∪ Q ′, Σ, δ ∪ δ′ ∪ δ′′,S ,F ′),
where δ′′ = {(q, ε, q′) : q ∈ F , q′ ∈ S ′}.

In other words, put M and M ′ side by side, and connect the end of
M to the start of M ′ with ε transitions.

0

1 2

3 4

a

a

b

b

a, b

a, b
0′

a, b

1′
a

2′
b

ε

ε

Building ε-NFAs: concatenation 15.3/23

Hence we know
regular languages are
closed under
concatenation.

The big win from ε is concatenation:
Given L = L(M) and L′ = L(M ′), can we build a machine that
accepts LL′ = {ss ′ : s ∈ L, s ′ ∈ L′} ?
I The concatenation of M and M ′ (where Σ′ = Σ and

Q ∩ Q ′ = ∅) is MM ′ = (Q ∪ Q ′, Σ, δ ∪ δ′ ∪ δ′′,S ,F ′),
where δ′′ = {(q, ε, q′) : q ∈ F , q′ ∈ S ′}.

In other words, put M and M ′ side by side, and connect the end of
M to the start of M ′ with ε transitions.

0

1 2

3 4

a

a

b

b

a, b

a, b
0′

a, b

1′
a

2′
b

ε

ε

Building ε-NFAs: concatenation 15.4/23

Hence we know
regular languages are
closed under
concatenation.

The big win from ε is concatenation:
Given L = L(M) and L′ = L(M ′), can we build a machine that
accepts LL′ = {ss ′ : s ∈ L, s ′ ∈ L′} ?
I The concatenation of M and M ′ (where Σ′ = Σ and

Q ∩ Q ′ = ∅) is MM ′ = (Q ∪ Q ′, Σ, δ ∪ δ′ ∪ δ′′,S ,F ′),
where δ′′ = {(q, ε, q′) : q ∈ F , q′ ∈ S ′}.

In other words, put M and M ′ side by side, and connect the end of
M to the start of M ′ with ε transitions.

0

1 2

3 4

a

a

b

b

a, b

a, b
0′

a, b

1′
a

2′
b

ε

ε

Building ε-NFAs: looping 16.1/23

Note that the initial
and final states
remain such.

A generalization of concatenation is concatenating a machine with
itself:

0

1 2

3 4

a
b

b
a

ε

ε

This machine accepts {ab, ba}.

Building ε-NFAs: looping 16.2/23

Note that the initial
and final states
remain such.

A generalization of concatenation is concatenating a machine with
itself:

0

1 2

3 4

a
b

b
a

ε

ε

This machine accepts strings made up of sequences of ab and ba.

Regular Expressions 17.1/23

‘regexp’ vs ‘regex’ is
one of those religious
wars.

The main difference
is ∪ vs |, and the
plentiful syntactic
sugar in PL notation.

If L ⊆ Σ∗, L∗ means⋃
n>=0 L

n,
where L0 = {ε}.

ε-NFAs are not very convenient for writing in programs!
Regular expressions (regexes, regexps) are a simple and universally
used way of describing string languages. Any program that does
anything with text probably uses them.

There are two styles of notation used for regexps: traditional CS
theory, and programming language. We’ll use programming.
Given an alphabet Σ, we define the class R of regular expressions
over Σ, and the languages L(R) accepted by them, thus:

I if a ∈ Σ, then a ∈ R, and L(a) = {a}
I ε ∈ R, and L(ε) = {ε}
I if R,S ∈ R, then RS ∈ R and L(RS) = L(R)L(S)

I if R,S ∈ R, then R|S ∈ R and L(R|S) = L(R) ∪ L(S)

I if R ∈ R, then R∗ ∈ R, and L(R∗) = L(R)∗

Regular Expressions 17.2/23

‘regexp’ vs ‘regex’ is
one of those religious
wars.

The main difference
is ∪ vs |, and the
plentiful syntactic
sugar in PL notation.

If L ⊆ Σ∗, L∗ means⋃
n>=0 L

n,
where L0 = {ε}.

ε-NFAs are not very convenient for writing in programs!
Regular expressions (regexes, regexps) are a simple and universally
used way of describing string languages. Any program that does
anything with text probably uses them.
There are two styles of notation used for regexps: traditional CS
theory, and programming language. We’ll use programming.

Given an alphabet Σ, we define the class R of regular expressions
over Σ, and the languages L(R) accepted by them, thus:

I if a ∈ Σ, then a ∈ R, and L(a) = {a}
I ε ∈ R, and L(ε) = {ε}
I if R,S ∈ R, then RS ∈ R and L(RS) = L(R)L(S)

I if R,S ∈ R, then R|S ∈ R and L(R|S) = L(R) ∪ L(S)

I if R ∈ R, then R∗ ∈ R, and L(R∗) = L(R)∗

Regular Expressions 17.3/23

‘regexp’ vs ‘regex’ is
one of those religious
wars.

The main difference
is ∪ vs |, and the
plentiful syntactic
sugar in PL notation.

If L ⊆ Σ∗, L∗ means⋃
n>=0 L

n,
where L0 = {ε}.

ε-NFAs are not very convenient for writing in programs!
Regular expressions (regexes, regexps) are a simple and universally
used way of describing string languages. Any program that does
anything with text probably uses them.
There are two styles of notation used for regexps: traditional CS
theory, and programming language. We’ll use programming.
Given an alphabet Σ, we define the class R of regular expressions
over Σ, and the languages L(R) accepted by them, thus:

I if a ∈ Σ, then a ∈ R, and L(a) = {a}

I ε ∈ R, and L(ε) = {ε}
I if R,S ∈ R, then RS ∈ R and L(RS) = L(R)L(S)

I if R,S ∈ R, then R|S ∈ R and L(R|S) = L(R) ∪ L(S)

I if R ∈ R, then R∗ ∈ R, and L(R∗) = L(R)∗

Regular Expressions 17.4/23

‘regexp’ vs ‘regex’ is
one of those religious
wars.

The main difference
is ∪ vs |, and the
plentiful syntactic
sugar in PL notation.

If L ⊆ Σ∗, L∗ means⋃
n>=0 L

n,
where L0 = {ε}.

ε-NFAs are not very convenient for writing in programs!
Regular expressions (regexes, regexps) are a simple and universally
used way of describing string languages. Any program that does
anything with text probably uses them.
There are two styles of notation used for regexps: traditional CS
theory, and programming language. We’ll use programming.
Given an alphabet Σ, we define the class R of regular expressions
over Σ, and the languages L(R) accepted by them, thus:

I if a ∈ Σ, then a ∈ R, and L(a) = {a}
I ε ∈ R, and L(ε) = {ε}

I if R,S ∈ R, then RS ∈ R and L(RS) = L(R)L(S)

I if R,S ∈ R, then R|S ∈ R and L(R|S) = L(R) ∪ L(S)

I if R ∈ R, then R∗ ∈ R, and L(R∗) = L(R)∗

Regular Expressions 17.5/23

‘regexp’ vs ‘regex’ is
one of those religious
wars.

The main difference
is ∪ vs |, and the
plentiful syntactic
sugar in PL notation.

If L ⊆ Σ∗, L∗ means⋃
n>=0 L

n,
where L0 = {ε}.

ε-NFAs are not very convenient for writing in programs!
Regular expressions (regexes, regexps) are a simple and universally
used way of describing string languages. Any program that does
anything with text probably uses them.
There are two styles of notation used for regexps: traditional CS
theory, and programming language. We’ll use programming.
Given an alphabet Σ, we define the class R of regular expressions
over Σ, and the languages L(R) accepted by them, thus:

I if a ∈ Σ, then a ∈ R, and L(a) = {a}
I ε ∈ R, and L(ε) = {ε}
I if R, S ∈ R, then RS ∈ R and L(RS) = L(R)L(S)

I if R,S ∈ R, then R|S ∈ R and L(R|S) = L(R) ∪ L(S)

I if R ∈ R, then R∗ ∈ R, and L(R∗) = L(R)∗

Regular Expressions 17.6/23

‘regexp’ vs ‘regex’ is
one of those religious
wars.

The main difference
is ∪ vs |, and the
plentiful syntactic
sugar in PL notation.

If L ⊆ Σ∗, L∗ means⋃
n>=0 L

n,
where L0 = {ε}.

ε-NFAs are not very convenient for writing in programs!
Regular expressions (regexes, regexps) are a simple and universally
used way of describing string languages. Any program that does
anything with text probably uses them.
There are two styles of notation used for regexps: traditional CS
theory, and programming language. We’ll use programming.
Given an alphabet Σ, we define the class R of regular expressions
over Σ, and the languages L(R) accepted by them, thus:

I if a ∈ Σ, then a ∈ R, and L(a) = {a}
I ε ∈ R, and L(ε) = {ε}
I if R, S ∈ R, then RS ∈ R and L(RS) = L(R)L(S)

I if R, S ∈ R, then R|S ∈ R and L(R|S) = L(R) ∪ L(S)

I if R ∈ R, then R∗ ∈ R, and L(R∗) = L(R)∗

Regular Expressions 17.7/23

‘regexp’ vs ‘regex’ is
one of those religious
wars.

The main difference
is ∪ vs |, and the
plentiful syntactic
sugar in PL notation.

If L ⊆ Σ∗, L∗ means⋃
n>=0 L

n,
where L0 = {ε}.

ε-NFAs are not very convenient for writing in programs!
Regular expressions (regexes, regexps) are a simple and universally
used way of describing string languages. Any program that does
anything with text probably uses them.
There are two styles of notation used for regexps: traditional CS
theory, and programming language. We’ll use programming.
Given an alphabet Σ, we define the class R of regular expressions
over Σ, and the languages L(R) accepted by them, thus:

I if a ∈ Σ, then a ∈ R, and L(a) = {a}
I ε ∈ R, and L(ε) = {ε}
I if R, S ∈ R, then RS ∈ R and L(RS) = L(R)L(S)

I if R, S ∈ R, then R|S ∈ R and L(R|S) = L(R) ∪ L(S)

I if R ∈ R, then R∗ ∈ R, and L(R∗) = L(R)∗

Regexp examples 18.1/23

I (ab|ba)∗ is the language from slide 16.2.
I (aa|bb)(a|b)∗ab is the language from slide 15.4
I 1∗(1∗01∗01∗)∗ is the language of strings with an even number

of 0s. (Why? Why is this so much more complex than the DFA
from last week?)

Regular expressions to ε-NFAs 19.1/23

If you need to see
details, they’re in the
book.

The constructors for regexps are exactly the operators with easy
ε-NFA constructions. So it is very easy to convert regexps to
ε-NFAs, starting with the automata for ε and a.
So easy it’s not even worth having a slide!
We can conclude that for R ∈ R, L(R) is a regular language.

If you use the ε-NFA constructors, what is the automaton for ab?

a ε b

Regular expressions to ε-NFAs 19.2/23

If you need to see
details, they’re in the
book.

The constructors for regexps are exactly the operators with easy
ε-NFA constructions. So it is very easy to convert regexps to
ε-NFAs, starting with the automata for ε and a.
So easy it’s not even worth having a slide!
We can conclude that for R ∈ R, L(R) is a regular language.
If you use the ε-NFA constructors, what is the automaton for ab?

a ε b

Regular expressions to ε-NFAs 19.3/23

If you need to see
details, they’re in the
book.

The constructors for regexps are exactly the operators with easy
ε-NFA constructions. So it is very easy to convert regexps to
ε-NFAs, starting with the automata for ε and a.
So easy it’s not even worth having a slide!
We can conclude that for R ∈ R, L(R) is a regular language.
If you use the ε-NFA constructors, what is the automaton for ab?

a ε b

ε-NFAs to regular expressions 20.1/23

Internal means
neither initial nor
accepting.

We’ve combined
multiple (a, b)
transitions into one
with |.

Unsurprisingly, every regular language is described by a regexp: any
ε-NFA can be converted to a regexp. This is harder!

The basic technique is to remove internal states, and combine the
transitions through it into transitions labelled by regexps:

a b
=⇒ ab

If the state to be removed has self loops, that’s still easy:

a

a, b

b

=⇒ a(a|b)∗b

ε-NFAs to regular expressions 20.2/23

Internal means
neither initial nor
accepting.

We’ve combined
multiple (a, b)
transitions into one
with |.

Unsurprisingly, every regular language is described by a regexp: any
ε-NFA can be converted to a regexp. This is harder!
The basic technique is to remove internal states, and combine the
transitions through it into transitions labelled by regexps:

a b
=⇒ ab

If the state to be removed has self loops, that’s still easy:

a

a, b

b

=⇒ a(a|b)∗b

ε-NFAs to regular expressions 20.3/23

Internal means
neither initial nor
accepting.

We’ve combined
multiple (a, b)
transitions into one
with |.

Unsurprisingly, every regular language is described by a regexp: any
ε-NFA can be converted to a regexp. This is harder!
The basic technique is to remove internal states, and combine the
transitions through it into transitions labelled by regexps:

a b
=⇒ ab

If the state to be removed has self loops, that’s still easy:

a

a, b

b

=⇒ a(a|b)∗b

ε-NFAs to regular expressions, cont. 21.1/23

The book describes
a different method,
solving equations
and using Arden’s
Rule. It is essentially
equivalent, and
perhaps easier to
program, but less
easy to understand
intuitively.
If you are feeling
strong, try our
technique on the
‘even 0s and odd 1s’
machine from last
week.

So far so good, but what about initial and accepting states with
loops etc.?

Before doing the previous, first convert to a new machine by adding
a single initial and single final:

a
b

b
a

ε
ε

ε

Now repeating the previous procedure will bring you to a big |
regexp on one transition between the red states.
Hence: regular expressions describe exactly the regular languages.

ε-NFAs to regular expressions, cont. 21.2/23

The book describes
a different method,
solving equations
and using Arden’s
Rule. It is essentially
equivalent, and
perhaps easier to
program, but less
easy to understand
intuitively.
If you are feeling
strong, try our
technique on the
‘even 0s and odd 1s’
machine from last
week.

So far so good, but what about initial and accepting states with
loops etc.?
Before doing the previous, first convert to a new machine by adding
a single initial and single final:

a
b

b
a

ε
ε

ε

Now repeating the previous procedure will bring you to a big |
regexp on one transition between the red states.
Hence: regular expressions describe exactly the regular languages.

ε-NFAs to regular expressions, cont. 21.3/23

The book describes
a different method,
solving equations
and using Arden’s
Rule. It is essentially
equivalent, and
perhaps easier to
program, but less
easy to understand
intuitively.
If you are feeling
strong, try our
technique on the
‘even 0s and odd 1s’
machine from last
week.

So far so good, but what about initial and accepting states with
loops etc.?
Before doing the previous, first convert to a new machine by adding
a single initial and single final:

a
b

b
a

ε
ε

ε

Now repeating the previous procedure will bring you to a big |
regexp on one transition between the red states.
Hence: regular expressions describe exactly the regular languages.

ε-NFAs to regular expressions, cont. 21.4/23

The book describes
a different method,
solving equations
and using Arden’s
Rule. It is essentially
equivalent, and
perhaps easier to
program, but less
easy to understand
intuitively.
If you are feeling
strong, try our
technique on the
‘even 0s and odd 1s’
machine from last
week.

So far so good, but what about initial and accepting states with
loops etc.?
Before doing the previous, first convert to a new machine by adding
a single initial and single final:

a
b

b
a

ε
ε

ε

Now repeating the previous procedure will bring you to a big |
regexp on one transition between the red states.
Hence: regular expressions describe exactly the regular languages.

Regexps in real life 22.1/23

‘Syntactic sugar’
refers to syntax that
doesn’t increase the
power of a language,
but makes it easier
and shorter to write.

Actual regexps have many more constructors, to make them easier
to use. Some examples:

I Character classes [abc] meaning (a|b|c), and ranges [a–f]
meaning (a|b|c|d |e|f).

I Negated character classes [̂ abc] meaning any character except
a, b, c .

I Optional subexpressions R? meaning (ε|R).
I At least one R+ meaning RR∗.
I Wildchard . meaning any character (usually except newline).

and many more. The older ones are syntactic sugar, but modern
languages may add constructors that are no longer regular.

Regexps in real life 22.2/23

‘Syntactic sugar’
refers to syntax that
doesn’t increase the
power of a language,
but makes it easier
and shorter to write.

Actual regexps have many more constructors, to make them easier
to use. Some examples:

I Character classes [abc] meaning (a|b|c), and ranges [a–f]
meaning (a|b|c|d |e|f).

I Negated character classes [̂ abc] meaning any character except
a, b, c .

I Optional subexpressions R? meaning (ε|R).
I At least one R+ meaning RR∗.
I Wildchard . meaning any character (usually except newline).

and many more. The older ones are syntactic sugar, but modern
languages may add constructors that are no longer regular.

Regexps in real life 22.3/23

‘Syntactic sugar’
refers to syntax that
doesn’t increase the
power of a language,
but makes it easier
and shorter to write.

Actual regexps have many more constructors, to make them easier
to use. Some examples:

I Character classes [abc] meaning (a|b|c), and ranges [a–f]
meaning (a|b|c|d |e|f).

I Negated character classes [̂ abc] meaning any character except
a, b, c .

I Optional subexpressions R? meaning (ε|R).

I At least one R+ meaning RR∗.
I Wildchard . meaning any character (usually except newline).

and many more. The older ones are syntactic sugar, but modern
languages may add constructors that are no longer regular.

Regexps in real life 22.4/23

‘Syntactic sugar’
refers to syntax that
doesn’t increase the
power of a language,
but makes it easier
and shorter to write.

Actual regexps have many more constructors, to make them easier
to use. Some examples:

I Character classes [abc] meaning (a|b|c), and ranges [a–f]
meaning (a|b|c|d |e|f).

I Negated character classes [̂ abc] meaning any character except
a, b, c .

I Optional subexpressions R? meaning (ε|R).
I At least one R+ meaning RR∗.

I Wildchard . meaning any character (usually except newline).

and many more. The older ones are syntactic sugar, but modern
languages may add constructors that are no longer regular.

Regexps in real life 22.5/23

‘Syntactic sugar’
refers to syntax that
doesn’t increase the
power of a language,
but makes it easier
and shorter to write.

Actual regexps have many more constructors, to make them easier
to use. Some examples:

I Character classes [abc] meaning (a|b|c), and ranges [a–f]
meaning (a|b|c|d |e|f).

I Negated character classes [̂ abc] meaning any character except
a, b, c .

I Optional subexpressions R? meaning (ε|R).
I At least one R+ meaning RR∗.
I Wildchard . meaning any character (usually except newline).

and many more. The older ones are syntactic sugar, but modern
languages may add constructors that are no longer regular.

Regexps in real life 22.6/23

‘Syntactic sugar’
refers to syntax that
doesn’t increase the
power of a language,
but makes it easier
and shorter to write.

Actual regexps have many more constructors, to make them easier
to use. Some examples:

I Character classes [abc] meaning (a|b|c), and ranges [a–f]
meaning (a|b|c|d |e|f).

I Negated character classes [̂ abc] meaning any character except
a, b, c .

I Optional subexpressions R? meaning (ε|R).
I At least one R+ meaning RR∗.
I Wildchard . meaning any character (usually except newline).

and many more. The older ones are syntactic sugar, but modern
languages may add constructors that are no longer regular.

Matching regexps in real life 23.1/23

The language Perl
introduced extremely
powerful ‘regexps’,
which have been
taken up by other
language as
‘PCRE’s. Perl’s
regexps are not at all
regular. I have an
entire talk about
them!

Usually, programming languages assume you want to see if R
matches any substring of input s. I.e. R implicitly means (.∗R.∗) .
To avoid this, you can anchor to the beginning and/or end of s
using R̂$.

In reality, you want to know not only whether R matched a
substring of s, but which substring. You might also want to know
which subexpressions of R matched which sub-substrings.
So given input s = aaa, and R = (̂a∗)(a∗)$, which bits of s are
matched by the two parenthesized parts? (Remember NFAs are
non-deterministic!)
Programming languages determinize regexps: they say that ∗ is
greedy, i.e. matches as much as possible. So s would be matched as
(aaa)().

Matching regexps in real life 23.2/23

The language Perl
introduced extremely
powerful ‘regexps’,
which have been
taken up by other
language as
‘PCRE’s. Perl’s
regexps are not at all
regular. I have an
entire talk about
them!

Usually, programming languages assume you want to see if R
matches any substring of input s. I.e. R implicitly means (.∗R.∗) .
To avoid this, you can anchor to the beginning and/or end of s
using R̂$.
In reality, you want to know not only whether R matched a
substring of s, but which substring. You might also want to know
which subexpressions of R matched which sub-substrings.

So given input s = aaa, and R = (̂a∗)(a∗)$, which bits of s are
matched by the two parenthesized parts? (Remember NFAs are
non-deterministic!)
Programming languages determinize regexps: they say that ∗ is
greedy, i.e. matches as much as possible. So s would be matched as
(aaa)().

Matching regexps in real life 23.3/23

The language Perl
introduced extremely
powerful ‘regexps’,
which have been
taken up by other
language as
‘PCRE’s. Perl’s
regexps are not at all
regular. I have an
entire talk about
them!

Usually, programming languages assume you want to see if R
matches any substring of input s. I.e. R implicitly means (.∗R.∗) .
To avoid this, you can anchor to the beginning and/or end of s
using R̂$.
In reality, you want to know not only whether R matched a
substring of s, but which substring. You might also want to know
which subexpressions of R matched which sub-substrings.
So given input s = aaa, and R = (̂a∗)(a∗)$, which bits of s are
matched by the two parenthesized parts? (Remember NFAs are
non-deterministic!)

Programming languages determinize regexps: they say that ∗ is
greedy, i.e. matches as much as possible. So s would be matched as
(aaa)().

Matching regexps in real life 23.4/23

The language Perl
introduced extremely
powerful ‘regexps’,
which have been
taken up by other
language as
‘PCRE’s. Perl’s
regexps are not at all
regular. I have an
entire talk about
them!

Usually, programming languages assume you want to see if R
matches any substring of input s. I.e. R implicitly means (.∗R.∗) .
To avoid this, you can anchor to the beginning and/or end of s
using R̂$.
In reality, you want to know not only whether R matched a
substring of s, but which substring. You might also want to know
which subexpressions of R matched which sub-substrings.
So given input s = aaa, and R = (̂a∗)(a∗)$, which bits of s are
matched by the two parenthesized parts? (Remember NFAs are
non-deterministic!)
Programming languages determinize regexps: they say that ∗ is
greedy, i.e. matches as much as possible. So s would be matched as
(aaa)().

