
Informatics 2 – Introduction to

Algorithms and Data Structures

Lab Sheet 1: Getting started in Python

This is the first of three lab sheets which are intended to serve multiple purposes:

1. Introduce you to the basics of programming in Python (enough to enable
you to tackle the coursework assignments).

2. Provide practical illustrations of some of the ideas introduced in lectures
(many of the examples and exercises tie in with the lecture material).

3. Help you to think about what is going on ‘under the hood’ in the Python
interpreter. E.g. what data structures are being used to implement lists
or sets in Python, and what are their strengths and weaknesses? This is
one aspect of what a good programmer should be aware of.

The lab sheets form an important part of the course, and you should take time
to work through them even if you are already fluent in Python. This first sheet
will help you to get started, and will introduce you to various kinds of (simple
and complex) expressions.

The exercises appearing within the sheets are purely for your own private use:
you are not required to submit them. Solutions to the exercises within each
sheet will be issued a week after the sheet itself.

A more comprehensive tutorial for Python (version 3.8) can be found online at:

https://docs.python.org/3.8/tutorial/

Feel free to check it if you feel that you need a more closely guided tutorial.
The docs are also a very useful source for verifying or reminding yourself of how
some things are done in Python, so do go back to them as often as you need.

1 Accessing Python

For the purpose of working through these lab sheets, you may either install
Python on your own machine, or else work on an Informatics DICE machine.

1

https://docs.python.org/3.8/tutorial/

1.1 Your own machine

If you don’t have Python installed on your machine already, it’s easy to do from
the following website:

https://www.python.org/downloads/

We recommend that if possible you work with Python 3.8 (the specific version
currently on DICE is 3.8.10). Other versions of Python 3 should also be fine for
most purposes, but Python 2 is best avoided as it is no longer supported and
has some significant incompatibilities with Python 3. If your machine currently
runs Python 2, we suggest you upgrade to 3.8.

Working on your own machine is fine for the purpose of these lab sheets. When
it comes to the assessed courseworks, you may use your own machine to develop
your code, but you should check that it runs correctly under DICE before
you submit it, as that’s where it will be tested and marked.

1.2 DICE machines

This year you will have in-person access to DICE machines in the Appleton
Tower machine halls, but it’s also possible to log on to them remotely. You
may do this via an ssh gateway, or using the graphical Remote Desktop Service
(XRDP). Information on connecting by these two means may be found on the
School’s Computing Support pages:

https://computing.help.inf.ed.ac.uk/external-login

https://computing.help.inf.ed.ac.uk/remote-desktop

Once you’ve connected, open a command shell on the DICE machine, and type

python

This launches the Python interpreter on DICE (currently version 3.8.10).

2 Interpreter

In this first lab sheet, we’ll be executing commands directly in the Python in-
terpreter. The ability to do this is one of the nice things about Python. This
can save time when you are developing software: when you are not sure about
something, you can often test it directly from the interpreter, without the over-
head of having to write and compile a small program. (In the second lab sheet,
we’ll consider programs written and maintained in a separate source file.)

? In this lab sheet, type the lines introduced by >>> and by ... You may cut
and paste individual lines if you prefer, but cutting and pasting whole sections
will usually not work (we’ll see why).

2

https://www.python.org/downloads/
https://computing.help.inf.ed.ac.uk/external-login
https://computing.help.inf.ed.ac.uk/remote-desktop

3 Basic Types

3.1 Numbers

The Python interpreter can be used as a simple calculator. Expression syntax
is straightforward: the operators +, -, *, / work just like in most other languages.

? Enter the following expressions in the Python interpreter you have just launched:

>>> 2+2

>>> 3*2

>>> 2 + 7.3

The _ variable can be used whenever you wish to utilize the value produced by
the latest calculation in the interactive interpreter:

>>> 3*5

>>> 1 + _

>>> _ / 4

Lines previously inserted in the interpreter shell can be recalled by pressing
the ↑ cursor button. The ← and → cursor buttons also work as expected to
move backwards and forwards through the characters in the current line. Take
a moment now to experiment with these keys. You can type exit() to exit the
interpreter.

% normally stands for the modulo operator, which calculates the remainder of
the integer division between its two operators. This operator is more useful and
more common than you might think.

>>> 153 % 10

>>> 37 % 6

>>> 231 % 3

Similarly, the // operator performs integer division, returning only the integer
part of the quotient:

>>> 37 // 6

>>> # If you change 37 and 6 for any other two numbers,

... # this will always return the first number.

... 6 * (37 // 6) + (37 % 6)

Finally, the ** operator performs exponentiation:

>>> 2 ** 2

>>> 2 ** 3

>>> 10 ** 5

>>> 1.5 ** 4.3

Note that, unlike other more low-level languages like C and Java, integers in
Python can be arbitrarily long while maintaining full precision:

>>> 123456789123456789123456789123456789123456789123456789 * 987654321

3

This is interesting from a data structures point of view, and may present some
interesting questions about the implementation if you think about it, but we
will not dig deeper for now.
Floating point numbers (scientific notation), however, have limited precision.
The limitations in precision may appear in situations you do not expect it to.
For example, try this:

>>> 1.2 - 1.0

>>> _ - 0.2

Note that exact division (/) will produce floating point numbers even when
dividing two integers, even when they are exactly divisible. This may reduce
precision inadvertently:

>>> x = 123456789123456789123456789123456789123456789123456789123456789

>>> x

>>> y = x * 987654321

>>> y

>>> z = y / 987654321

>>> z

>>> x == z

As a consequence, you should be careful whenever you use floating point num-
bers or /, and use alternatives whenever precision is important. This happens
in any programming language that uses floating point numbers1.

3.2 Boolean Types

The Boolean type is named bool. Its values are True and False2. The bool

function takes any Python value and converts it to True or False, in the way
that you would expected in, for example, C.

>>> bool(1)

>>> bool(0)

>>> bool([1])

>>> bool([])

3.3 Strings

Strings can be enclosed in single or double quotes3:

>>> ’hello’

>>> ’how\’s it going?’

>>> "how’s it going?"

>>> ’This is "strange"’

Strings can be concatenated using the + operator, and can be repeated with the
* operator:

1If you want to know why, read up on the implementation of floating point numbers.
2Capitalization is important!
3There is no difference between them except when the string itself contains quote charac-

ters. Whichever quote character is being used to demarcate the string will need to be escaped,
i.e. preceded with a backslash.

4

>>> ’Hello ’ + ’, ’ + ’how are you’

>>> ’help’ + ’!’*5

The individual characters of a string can be accessed using indices. For example
the first character has index 0. Substrings can be specified with slice notation,
two indices separated by colon. When using slices, indices can be thought of as
pointing between characters, instead of pointing to characters: the left edge of
the first character is 0 and so on. Another way to think about this is that the
initial index is inclusive and the final index is exclusive.

The following commands illustrate this with the help of a user-defined variable
called word. Take care when you name your variables not to use reserved words
of the language, such as if. For a list of reserved words, look here:
https://docs.python.org/3/reference/lexical_analysis.html#keywords.

>>> word = "hello"

>>> word[0]

>>> word[2]

>>> word[0:2]

>>> word[2:5]

>>> word[:2]

>>> word[2:]

>>> word[:]

Negative indices start counting from the right end.

>>> word[-1]

>>> word[-2:]

Strings are immutable. This means that they cannot be modified once they
are created. Trying to modify a substring results in an error. Numbers are
also immutable, but this is true in (almost) every language. However, it is
easy to create a new string by concatenating substrings from other strings, the
same way that you create a new number by multiplying other numbers. String
variable values can be replaced with new strings, and you should make sure you
understand the difference between this and modifying the string itself:

>>> x = "hello"

>>> y = x

The following creates a new string and replacing the value of the variable x for
it.

>>> x = x + ", how are you?"

>>> x

>>> y

Even the following is creating a new string. x += is just ‘syntactic sugar’ for
x = x +. They are no different.

>>> x += " I’m fine, thanks!"

5

https://docs.python.org/3/reference/lexical_analysis.html#keywords

However, the following is an attempt to modify part of an existing string, and
results in an error. This is what is meant by saying strings are immutable.

>>> x[0] = "H"

The built-in function len gives the length of a string:

>>> len(x)

3.4 Lists

There are different types of compound structures in Python. The most versatile
is the list.

>>> L = [’monday’,’tuesday’,’wednesday’,’thursday’,’friday’]

>>> L

Note that, in Python (unlike Haskell), lists can contain elements of different
types, and these elements may themselves be lists:

>>> [1,"abc",[2,[[]]]]

Like strings, list items can also be accessed using indices. Similarly, they can
be sliced and concatenated:

>>> L[0]

>>> L[3]

>>> L[1:]

>>> L[:2]

>>> L[1:3]

>>> L + [’saturday’,’sunday’]

This is because both strings and lists (and tuples and a few others we will not
mention here) are what Python calls sequence types. Operations like verifying
membership, concatenation, indexing, slicing and measuring the length of a
sequence can be performed on any sequence type. For example:

>>> len(L)

One can verify the membership of an element to a list using the keyword in.

>>> ’wednesday’ in L

>>> ’sunday’ in L

Unlike strings, lists are mutable. Items can be added at the end of a list using
the append(item) method of the list object.

>>> L3 = []

>>> L32 = L3

>>> L3s = [L3,L3,L3]

>>> L3.append(1)

>>> L3.append(2)

>>> L3

>>> L32

>>> L3s

6

To avoid such effective, explicit copying (or cloning) of lists is sometimes im-
portant (but it makes the computer do work, so it should be done sparingly).
A common way to do this in Python is by using the slice operator (:) already
introduced. For example:

>>> L0 = []

>>> L1 = L0[:]

>>> L1.append(1)

>>> L2 = L1[:]

>>> L2.append(2)

>>> L0, L1, L2

insert(i,x) inserts the item x at position i, moving every element after that
to the right.

>>> L2 = [’a’,’b’,’d’,’e’]

>>> L2.insert(2,’c’)

>>> L2

remove(x) removes the first item in the list whose value is x, moving every
element to its right to the left.

>>> L2.remove(’d’)

>>> L2

pop() returns (and removes) the last item in the list; likewise, pop(i) returns
and removes the item in position i.

>>> L2.pop()

>>> L2

reverse() reverses the elements of the list, in place.

>>> L2.reverse()

>>> L2

You may iterate over a list directly:

>>> for v in [’a’,’b’,’c’,’d’]:

... print(v)

...

? This is our first example of a Python command spread over more than one line
of input. The ‘...’ prompt indicates that Python is expecting more. In this
instance, supplying a blank line at the end (i.e. just hitting return again) tells
the interpreter that you’ve finished. A reminder that you should either type the
input yourself, or cut and paste one line at a time. (If you try to cut and paste
all the above at once, you’ll see what goes wrong.)

Note that in Python, formatting has meaning - this means the spacing is
very important. Groups of statements are often indented under a header: for
instance, the print statement in the second line above is indented relative to
the for statement. Blocks of code are nested by increasing the indentation.

7

There are no end-of-statement symbols (like the semicolon; in Java or C). In-
stead, newline marks the end of a statement.

If you want to retrieve the index and the value at the same time, use the
enumerate(list) function.

>>> for i, v in enumerate([’a’,’b’,’c’,’d’]):

... print(i, v)

...

Again, the additional (unindented) blank line indicates the end of the for loop.

Lists in Python are one of the most fundamental tools that you will be working
with. So much so, that a fundamental functionality of Python is what is called
the list comprehension syntax (this is similar to what you may have seen in
Haskell). This allows us to define lists through an expression over other lists:

>>> [2*x for x in range(1,6)]

>>> [y*y for y in [2*x for x in range(1,6)]]

>>> [(x,y) for x in range(2,8) for y in range(5,9)]

>>> [(x,y) for x in range(2,8) for y in range(5,9) if x < y]

Notice that the last example shows how a list can be ‘filtered’ so as to contain
only those members satisfying the if condition.

Of course, all this is mostly syntactic sugar combining for loops with lists, as
any of the above could be expressed using imperative style for loops:

>>> L1 = []

>>> for x in range(1,6):

... L1.append(2*x)

...

>>> L1

However, not only is the latter more verbose, but it also forces us to define
extra helper variables and distracts us from a very simple notion: wanting the
double of each element in the list. Therefore, list comprehension syntax is highly
encouraged and should be used often.

3.5 Tuples

A tuple is composed by a number of values separated by commas, and enclosed
by parentheses.

>>> T = (1,2,’three’)

>>> T

>>> T[2]

Tuples can be nested.

>>> T1 = (1,2,(3,5))

>>> T1

8

What’s the difference between tuples and lists? Tuples, like strings, are im-
mutable and cannot be changed once created. If you try, you will get an error
message.

>>> s = "hello"

>>> s[1] = "u"

>>> T1[2] = 3

But this does not mean that tuples have no reason to be used: sometimes you
want to make sure that the tuple will not change and, perhaps more importantly,
there are some important data structures that rely on the fact that items are
known to be immutable (see below). The key is to know what you need in each
occassion and choose the appropriate type.

3.6 Exercises on list comprehension

List comprehension is a very powerful tool, and it is great for expressing some
of the most fundamental notions underlying an algorithm. Try these exercises
to get some practice in it.

Exercise 1:
Define a list containing all even numbers between 5 and 134.

Hint : You can check if a number x is even by checking that x % 2 == 0.

Exercise 2:
Define a list containing all initial substrings of the string “python” (e.g. “py”,
“pytho”, etc.).
Define another list containing all of its final substrings (e.g. “thon”, “n”, etc.).
Define another list containing all of its substrings (e.g. “py”, “thon”, “ytho”,
etc.).

Exercise 3:
Create a list consisting of all triples (x,y,z) of three positive integers that add
up to exactly 10.

Exercise 4:
To produce multiples of a number (e.g. 5), we can proceed in at least two very
different ways:

• We can produce numbers and check if they are multiples of 5 (x % 5 == 0).

• We can produce numbers and multiply them by 5, which guarantees that
the result is a multiple of 5.

Which of these options seems better to you? Write list comprehension definitions
for the list of all multiples of 5 between 1 and 1000 calculated in each of these
two ways.

9

Exercise 5:

Finding divisors of a number is harder than finding multiples. How would you
define a list containing all divisors of 714 which are not 1 and 714?

Exercise 6:

Remember that a prime number is a number that is only divisible by 1 and
itself. Define a list containing all prime numbers between 2 and 1000.

Hint : Use the previous exercise, and don’t worry here if your solution seems
needlessly inefficient. To check if a list is empty, you can either do len(list) == 0

or list == [].

3.7 Lists and complexity

Lists are a very important data structure in most programming languages, but
there are many different ways to implement them, with different complexity
properties for the different operations we may need to do with them. We will
now do a few experiments to see this.

In Python, lists are implemented using extensible arrays. Simplified, this means
that Python pre-allocates more space in memory than is strictly needed to hold
a list, so that new insertions can be performed without having to re-allocate
memory, and keeping the entire list sequentially in a contiguous space in mem-
ory. This makes accessing the list and modifying its elements quicker. When the
pre-allocated space runs out, Python allocates a new, larger block (9/8 times
bigger, roughly speaking), moving the entire list to the beginning of the new
block and freeing the old block. Similarly, when elements in the list are removed,
sometimes the list will be moved to a smaller space to free the unused space.
Usually all happens without you noticing, but we can do some experiments to
try to see it in action.

First, let’s set up a tool to measure running time of computations. Type the
following at your terminal (and don’t worry too much about the details of this):

>>> import timeit

>>> def time(com):

... return timeit.timeit(com, number = 1, globals = globals())

...

This defines a time(com) function that allows us to measure the time a com-
putation takes to happen (in seconds). This time depends, of course, on many
things, such as the speed of the computer we are running on, how many things
are running at the same time, etc., but it gives us a rought idea of how long
things take to run. Try it. Note that measuring the same computation multiple
times may produce different results:

>>> time(’[1,2,3][0]’)

>>> time(’[1,2,3][0]’)

>>> time(’[1,2,3][0]’)

10

>>> time(’[1,2,3][0]’)

>>> time(’[1,2,3][0]’)

So repeating the measurements is encouraged, to get a better idea of the average
time it takes to do things.

As we said, accessing and modifying elements in a list in Python is more or less
independent of the size of the list and how far in the list we look for elements,
so the following should all take approximately the same amount of time:

>>> L1 = list(range(1,100))

>>> L2 = list(range(1,10000000))

>>> time(’L1[0]’)

>>> time(’L1[50]’)

>>> time(’L1[98]’)

>>> time(’L2[0]’)

>>> time(’L2[98]’)

>>> time(’L2[1337]’)

>>> time(’L2[5000000]’)

>>> time(’L2[9999998]’)

And similarly for the following:

>>> time(’L1[0] = 5’)

>>> time(’L1[50] = 3’)

>>> time(’L1[98] = 777’)

>>> time(’L2[0] = 1234567’)

>>> time(’L2[98] = 7654321’)

>>> time(’L2[1337] = 0’)

>>> time(’L2[5000000] = -1’)

>>> time(’L2[9999998] = -500’)

Appending an element to the list is almost always fast:

>>> L1 = list(range(1,100000))

>>> time(’L1.append(0)’)

>>> time(’L1.append(0)’)

>>> time(’L1.append(0)’)

>>> time(’L1.append(0)’)

>>> time(’L1.append(0)’)

>>> time(’L1.append(0)’)

>>> time(’L1.append(0)’)

However, sometimes it will trigger the re-allocation of the list, taking consid-
erably longer. While it is hard to see this happening clearly, we can do some
things that show us that something is happening underneath. Measure the time
it takes to append an element 300000 times, and then look for the maximum
and minimum values in these times. Notice how they are (on my computer)
nearly 4 orders of magnitude different:

>>> times = [time(’L1.append(0)’) for n in range(1,300000)]

>>> min(times)

>>> max(times)

11

It is a lot easier to see how time for insertion is clearly slower for inserting into
earlier positions of the list:

>>> L2 = list(range(1,10000000))

>>> time(’L2.insert(2,0)’)

>>> time(’L2.insert(9999999,0)’)

This is, of course, because Python needs to move all the elements after the
position being inserted one space forward. The same happens for removing
elements:

>>> time(’L2.pop(2)’)

>>> time(’L2.pop(9999900)’)

3.8 Sets

Lists may have repeated elements, and the order within them matters. So that
the list [1,2,1] is different from [1,1,2] and both are different from [1,2].
Often, we wish that all these were considered equal: we only want to know
whether an element is or is not in the list, irrespective of how many times or in
what order. This is where sets come in.

Sets are a mutable data structure that corresponds essentially to the mathemat-
ical concept of a (finite) set. To define a set in Python we do:

>>> s1 = {1,2,3}

>>> s2 = {1,2,3,1}

>>> s1

>>> s2

>>> s1 == s2

To produce an empty set, we use set():

>>> set()

Sets are sequences, and so all functions that work in sequences work in them,
like len(set) or the in keyword.

The add(element) method can be used to add elements to a set. Note that
adding an element already in a set leaves it unchanged.

>>> s = {1,2,3}

>>> s

>>> s.add(4)

>>> s

>>> s.add(4)

>>> s

Similarly, you can remove elements from a set using the remove(element) or
the discard(element) methods.

12

>>> s = {1,2,3}

>>> s.remove(2)

>>> s

>>> s.discard(2)

>>> s

You can extract one (unpredictable)4 element from a set by using the pop()

method:

>>> {3,5,1,2}.pop()

Sets have several useful binary operations you can perform on them (union,
intersection, difference and symmetric difference, to name a few). We will not
go in detail through these but you are welcome to look them up, and perhaps
decide to use them in some of your programs. Note that all of these operations
create new sets.
You can also check if a set is contained in another by using the <= operator:

>>> x <= y

>>> y <= x

>>> x <= (x | y)

>>> (x & y) <= y

>>> set() <= x

Like lists, sets can contain heterogeneous elements:

>>> {1,2,’a’,84.37}

However, an important difference between sets and lists is that sets may only
contain immutable elements. (The same also applies to dictionaries: see below.)

>>> {[1,2]}

>>> {{1,2}}

Note that a set itself is a mutable structure – elements can be added or removed
– but the individual elements themselves must be immutable. This is one place
where tuples come into their own: unlike lists, they can be included as members
of sets.

>>> {[1,2]}

>>> {(1,2)}

Sets, like lists, can be defined using comprehension syntax:

>>> {2*x for x in {1,2,3,4}}

>>> {x % 2 for x in {1,2,3,4,5,6,7,8}}

In fact, comprehension for lists and for sets work well together. For instance, it
is simple to defining a set from a list:

4It is not really random, but it is incorrect to presume you will know which one it will be.

13

>>> L = [1,2,3,2,1]

>>> [2*x for x in L]

>>> {2*x for x in L}

Lists can also be defined from sets, but this has a big caveat: in which order?
It will often not be the one you will expect:

>>> L1 = [x for x in {1,2,3}]

>>> L2 = [x for x in {3,2,1}]

>>> L1

>>> L2

>>> L1 == L2

In fact, the same set can be printed in different ways depending on how you
defined it!:

>>> s1 = {1,2,1.5}

>>> s2 = {2,1.5,1}

>>> s1

>>> s2

>>> s1 == s2

which can cause mayhem when creating lists from them:

>>> L1 = [x for x in s1]

>>> L2 = [x for x in s2]

>>> L1

>>> L2

>>> s1 == s2

>>> L1 == L2

All of these facts trace down to implementation notions that have to do with
performance in the way these data structures are used and that we will talk
about in this course, and it may even change between implementations of the
Python interpreter, different computers or even different moments in which you
execute it. The general principle is: whenever you use a set (or a dictionary),
make sure that your program’s correctness is independent of the order in which
elements of the set are considered by the program.

3.9 Dictionaries

Dictionaries are very useful structures; in some other languages they are re-
ferred to as maps. They are indexed by keys, unlike lists which are indexed by
numerical indices. Keys can be any immutable objects, but not mutable ones
(we’ll see why in a moment).

A dictionary can be seen as a set of key:value pairs, with the constraint that
keys need to be distinct. The main operations performed on dictionaries are
storing and retrieving values by their keys.

>>> num = {’one’:1, ’two’:2, ’three’:3, ’four’:4}

>>> num[’three’]

>>> num

14

You can easily add a new item or modify an existing one in a dictionary:

>>> num[’five’] = 6

>>> num

>>> num[’five’] = 5

>>> num

You can delete an item from a dictionary using the built in function del(item):

>>> del(num[’three’])

>>> num

To list all the keys from a dictionary, you use the method keys():

>>> num.keys()

>>> list(num.keys())

The valued returned by keys() is a generator, which we will not cover here. To
transform it into a list, simply surround it with the list(generator) function.

If you iterate directly over a dictionary, it iterates over its keys:

>>> for k in num:

... print(k)

...

You can iterate over a dictionary, retrieving keys and values at the same time
using the items() method:

>>> for k, v in num.items():

... print k,v

...

Both sets and dictionaries in Python are implemented using a data structure
called a hash table, which we will cover in lectures. Hash tables are very efficient,
but they only work properly when the elements in question are immutable: this
is the main reason why only immutable elements are permitted in sets or as
dictionary keys.

? You may now end your interpreter session by typing exit(). Then close the
connection by typing logout in the shell, or by using the keys Ctrl+D, and
enjoy the rest of your day!

15

	Accessing Python
	Your own machine
	DICE machines

	Interpreter
	Basic Types
	Numbers
	Boolean Types
	Strings
	Lists
	Tuples
	Exercises on list comprehension
	Lists and complexity
	Sets
	Dictionaries

