
Inf2C - Computer Systems                           
Lectures 2-3 

Data Representation

Vijay Nagarajan

School of Informatics
University of Edinburgh



Last lecture

§ Course overview
– Piazza: up & running. Use it!
– Labs: drop-in. Start in week 2
– Tutorials: start in week 3

§ Moore’s law
§ Types of computer systems
§ Computer components
§ Computer system stack

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 2



Lecture 2: Data Representation
§ The way in which data is represented in computer 

hardware affects
– complexity of circuits
– cost
– speed
– reliability

§ Must consider how to design hardware for
– Storing data: memory
– Manipulating data: processing (e.g., adders, multipliers)

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 3



Lecture outline

§ The bit – atomic unit of data
§ Representing numbers

– Integers
– Floating point

§ Representing text

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 4



The bit

§ Information represented as sequences of symbols
– Humans use letters, numerals, punctuation, whitespace
– Computers use just 0s and 1s – bits

§ Bit – an acronym for Binary digiT

§ Advantages: easy to do computation, very reliable, 
simple circuits

§ Disadvantages: little information per bit à must use 
many bits.  256  ≡ 1 0000 0000,    ‘A’ ≡ 0100 0001

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 5



Natural numbers representation

§ Non-negative (unsigned) integers are very simple 
to represent in binary

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 6

n-1Bit position n-2 1 0
Binary:

Decimal: *2n-1+ *2n-2+ *21+ *20

MSB

Most significant bit

LSB

Least significant bit



Basic operations

§ Addition, subtraction with unsigned binary 
numbers is easy:

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 7

01101
+01011

00011

1111
01101

−01011
10000

0100

13

11

24
2



Fixed bit-length arithmetic

§ Hardware cannot handle infinitely long bit 
sequences

§ We end up with a few fixed-size data types
– Byte: always 8 bits
– Word: the typical unit of data on which a processor 

operates (32 or 64 bits most common today)

§ Overflow happens when a result does not fit
– Numbers wrap-around when they become too large
– Arithmetic is modulo 2N, where N=number of bits

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 8



What about negative numbers?

§ Sign-magnitude representation: 
– Use 1st bit (MSB) as the sign 
– 0 à positive,  1à negative, 

0010 ≡ 2      1010 ≡ -2

§ Complicates addition and subtraction
– The actual operation depends on the sign

§ Has positive and negative zero
– 0000 ≡ 0   1000 ≡ -0

Better way: 2’s complement representation
Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 9



Two’s complement: the intuition

§ Want: X + (-X) = 0

§ Insight: don’t need the full sum to be 0
– Only the bits within a computer’s fixed width 

need to be 0 (exploit overflows!)

§ Approach:
– Represent the negation of X as 2N-X
– Then:  X + (-X) = X + (2N-X) = 2N 

§ Recall: largest number represented with N bits: 2N-1
§ Note that N lowest bits of the sum are all 0!

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 10



Two’s complement: example

Given: 
• 3-bit fixed width (N=3)
• X = 2 (decimal) à 0 1 0 (binary)

2N = 8 (dec) à 1 0 0 0 (bin)

-X = 2N – X = 8 – 2 = 6 (dec) à 1 1 0 (bin)

Check: 
X + (-X) = 0 1 0 + 1 1 0 = 1 0 0 0 

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 11

3-bit fixed width



Efficiently computing 2’s complement

EASY!

“Flip the bits and add 1”

Example:
X = 0 1 0 (bin) à 2 (dec)

Flip the bits: 1 0 1

Add 1:          1 1 0  (bin) à -X

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 12



The roots of the idea

John von Neumann (died: 1957)
– Co-inventor of the stored program concept
– Proposed 2’s complement idea in a 1945 paper
– Also came up with cellular automata, numerical 

weather forecasting, concept of global warming
– Outside of computing: linear programming, quantum 

logic, policy of mutually assured destruction, and more!

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 13



2’s complement details

§ The MSB is the sign
§ A – B = A + (2’s complement of B)
§ Arithmetic operations do not depend on the 

operands’ signs
§ Range is asymmetric: −2n-1 to 2n-1-1
§ There are two kinds of overflows:

– Positive overflow produces a negative number
– Negative underflow produces a positive number

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 14



Converting between data types

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 15

§ Converting a 2’s complement number from a smaller to 
a larger representation is done by sign extension

Example: from byte to short (16 bits):

-2 = 11111110 Þ 1111111111111110

(byte) (short)

2 = 00000010 Þ 0000000000000010

(byte) (short)

-2 = 1 1 1 1 1 1 1 0 Þ ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 0
2 = 0 0 0 0 0 0 1 0 Þ ? ? ? ? ? ? ? ? 0 0 0 0 0 0 1 0



Shifting

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 16

§ Shifting: move the bits of  a data type left or right
– Data bits falling off  the edge are lost

§ For left shifts, 0s fill in the empty bit places
§ For right shifts, two options:

– Fill with 0 (logical shift): for non-numerical data
– Fill with MSB (arithmetic shift): for 2’s complement numbers

§ Shift left by n is equivalent to multiplying by 2n

§ Shift right by n is equivalent to dividing by 2n and 
rounding towards -∞

§ Example:

-6 = 1 1 1 1 1 0 1 0 >> 2   à 1 1 1 1 1 1 1 0 = -2

6 = 0 0 0 0 0 1 1 0 >> 2   à 0 0 0 0 0 0 0 1 = 1

6 = 0 0 0 0 0 1 1 0 << 2   à 0 0 0 1 1 0 0 0 = 24



Hexadecimal notation

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 17

§ Binary numbers (and other binary-encoded information) 
are too long and tedious for us (humans) to use

§ Solution: use a more compact encoding
§ Hexadecimal (base 16) is most common

§ Hex digits: 0-9 and A-F
– A=10dec, B=11, …, F=15

§ Conversion to/from binary is very easy:
Every 4 bits correspond to 1 hex digit

Hex is just a convenience for humans
Computers use the binary form

1 1 1 1 1 0 0 0

F(15) 8

= 0xF8



Real numbers - floating point

§ Java’s

§ Binary representation:
– example 0.75 in base 10 Þ 0.11 in base 2

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 18

float (32 bits)
double (64 bits)

(2-1 + 2-2 = 0.5 + 0.25 = 0.75)



Real numbers - floating point

§ Java’s

§ Binary representation:
– example 0.75 in base 10 Þ 0.11 in base 2

§ Normalized form: one non-zero digit before the point

0.11 Þ 1.1x2-1

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 19

float (32 bits)
double (64 bits)

Mantissa
(aka significand) exponent

Always 1 in binary

(2-1 + 2-2 = 0.5 + 0.25 = 0.75)



Why normalize?

Three reasons:
1. Simplifies machine representation
(don’t need to represent the fraction separator)
2. Simplifies comparisons 

– Which one is bigger:  0.0000101 or  0.000001  ?
1.01x2-5 vs  1.0x2-6

3. Is more compact for very small/large numbers
– E.g., 0.0000000000000001 = 1.0 x 2-16

or can be made more compact (by rounding fraction)
Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 20



Floating point conversion example #1

Convert the number 25 to floating point with normalization

1)25 in base 10 Þ 11001 in base 2 

2)11001 to normalized floating point Þ 1.1001x24

Understand that:
§ The number is normalized
§ 1.1001 is mantissa (aka significand)
§ 4 is exponent
§ sign is “+” (implicit here)

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 21



IEEE 754 Floating Point standard

§ Need a standard to represent and compute with fixed-width floats

§ 32 bit representation:

e.g.,
(0.75)10® (0.11)2® (1.1x2-1)2

® s = 0, m = 1, exp = 126
® 0 01111110 10000000000000000000000

Note: representation does NOT use 2’s complement
Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 22

31 30 22 0

sign
(s)

exponent
(exp)

mantissa (m)

(-1)s x (1.m) x 2exp-127

23

Bias
“1.” is implicit



IEEE 754 Floating Point standard

§ Need a standard to represent and compute with fixed-width floats

§ 32 bit representation:

e.g.,
(0.75)10® (0.11)2® (1.1x2-1)2

® s = 0, m = 1, exp = 126
® 0 01111110 10000000000000000000000

§ 64 bit representation:
– exponent = 11 bits; mantissa= 52 bits

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 23

31 30 22 0

sign
(s)

exponent
(exp)

mantissa (m)

(-1)s x (1.m) x 2exp-127

23

Bias
“1.” is implicit



IEEE 754 Floating Point standard

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 24

§ Why bias?
– Avoids the complexity of +/- exponents
– Simplifies relative ordering of FP numbers

§ Note: processors usually have specialized 
floating point units to perform FP arithmetic



IEEE 754 floating point conversion #2

Example: Convert 23.5 (decimal) to IEEE 754 
floating point
Start: 23 in base 10 Þ 10111 in base 2

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 25



IEEE 754 floating point conversion #2

Example: Convert 23.5 (decimal) to IEEE 754 
floating point
Start: 23 in base 10 Þ 10111 in base 2

1) 23.5 in base 10 Þ 10111.1 in base 2 

2) 10111.1 to normalized floating point Þ 1.01111x24

3) S = 0
M = 01111 is mantissa (remember: “1.” is implicit) 
Exp = 4+127 = 131 in base 10 Þ 1000 0011 in base 2

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 26

31 30 22 0
sign
(s)

exponent
(exp)

mantissa (m)
23 Pad with 0s



IEEE 754: Special Values

Exponent Mantissa Meaning
0 0 0
1-254 Anything Floating point number
255 (0xFF) 0 Infinity (signed)
255 (0xFF) Non-zero Not-a-number (NaN)

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 27

32-bit representation



Representing characters

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 28

§ Characters need to be encoded in binary too
§ Operations on characters have simpler 

requirements than on numbers, so the encoding 
choice is not crucial

§ Most common representation is ASCII
– Each character is held in a byte
– E.g. ‘0’ is 0x30, ‘A’ is 0x41, ‘a’ is 0x61

§ Java uses Unicode which can encode characters 
from all languages
– 16 bits per character



Representing strings

§ Words, sentences, etc. are just strings of 
characters

§ How is the end of a string identified?
– No common standard exists. Different 

programming languages use different encodings
– In C: a special character, encoded as 0x00

§ Also called NULL character
– In Java: string length is kept with the string itself

§ string is an object and length is one of its member variables

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 29



Summary

Inf2C-CS -2022-2023. © V. Nagarajan & B. Grot 30

§ Computers use binary representation
§ Signed numbers: sign-magnitude vs 2’s complement
§ Floating point
§ Characters and strings


