Inf2C - Computer Systems Lectures 2-3
 Data Representation

> Vijay Nagarajan

School of Informatics
University of Edinburgh

Last lecture

- Course overview
- Piazza: up \& running. Use it!
- Labs: drop-in. Start in week 2
- Tutorials: start in week 3
- Moore's law
- Types of computer systems
- Computer components
- Computer system stack

Lecture 2: Data Representation

- The way in which data is represented in computer hardware affects
- complexity of circuits
- cost
- speed
- reliability
- Must consider how to design hardware for
- Storing data: memory
- Manipulating data: processing (e.g., adders, multipliers)

Lecture outline

- The bit - atomic unit of data
- Representing numbers
- Integers
- Floating point
- Representing text

The bit

- Information represented as sequences of symbols
- Humans use letters, numerals, punctuation, whitespace
- Computers use just 0s and 1s - bits
- Bit - an acronym for Binary digiT
- Advantages: easy to do computation, very reliable, simple circuits
- Disadvantages: little information per bit \rightarrow must use many bits. $256 \equiv 100000000$, ‘A’ $\equiv 01000001$

Natural numbers representation

- Non-negative (unsigned) integers are very simple to represent in binary

Basic operations

- Addition, subtraction with unsigned binary numbers is easy:

Fixed bit-length arithmetic

- Hardware cannot handle infinitely long bit sequences
- We end up with a few fixed-size data types
- Byte: always 8 bits
- Word: the typical unit of data on which a processor operates (32 or 64 bits most common today)
- Overflow happens when a result does not fit
- Numbers wrap-around when they become too large
- Arithmetic is modulo 2^{N}, where $\mathrm{N}=$ number of bits

What about negative numbers?

- Sign-magnitude representation:
- Use $1^{\text {st }}$ bit (MSB) as the sign
$-0 \rightarrow$ positive, $1 \rightarrow$ negative,

$$
0010 \equiv 2 \quad 1010 \equiv-2
$$

- Complicates addition and subtraction
- The actual operation depends on the sign
- Has positive and negative zero
$-0000 \equiv 0 \quad 1000 \equiv-0$
Better way: 2's complement representation

Two's complement: the intuition

- Want: $\mathrm{X}+(-\mathrm{X})=0$
- Insight: don't need the full sum to be 0
- Only the bits within a computer's fixed width need to be 0 (exploit overflows!)
- Approach:
- Represent the negation of X as 2^{N}-X
- Then: $\mathrm{X}+(-\mathrm{X})=\mathrm{X}+\left(2^{\mathrm{N}}-\mathrm{X}\right)=2^{\mathrm{N}}$
- Recall: largest number represented with N bits: $2^{\mathrm{N}}-1$
- Note that N lowest bits of the sum are all 0 !

Two's complement: example

Given:

- 3-bit fixed width ($\mathrm{N}=3$)
- $\mathrm{X}=2$ (decimal) $\rightarrow 010$ (binary)
$2^{\mathrm{N}}=8(\mathrm{dec}) \rightarrow 1000(\mathrm{bin})$
$-\mathrm{X}=2^{\mathrm{N}}-\mathrm{X}=8-2=6(\mathrm{dec}) \rightarrow 110(\mathrm{bin})$
Check:

$$
\mathrm{X}+(-\mathrm{X})=010+110=1000
$$

Efficiently computing 2's complement

EASY!

"Flip the bits and add 1"

Example:

$$
\mathrm{X}=010 \text { (bin) } \rightarrow 2 \text { (dec) }
$$

Flip the bits: 101
Add 1: $\quad 110$ (bin) $\rightarrow-\mathrm{X}$

The roots of the idea

John von Neumann (died: 1957)

- Co-inventor of the stored program concept
- Proposed 2's complement idea in a 1945 paper
- Also came up with cellular automata, numerical
 weather forecasting, concept of global warming
- Outside of computing: linear programming, quantum logic, policy of mutually assured destruction, and more!

2's complement details

- The MSB is the sign
- $\mathrm{A}-\mathrm{B}=\mathrm{A}+(2$'s complement of B$)$
- Arithmetic operations do not depend on the operands’ signs
- Range is asymmetric: $-2^{\mathrm{n}-1}$ to $2^{\mathrm{n}-1}-1$
- There are two kinds of overflows:
- Positive overflow produces a negative number
- Negative underflow produces a positive number

Converting between data types

- Converting a 2's complement number from a smaller to a larger representation is done by sign extension

Example: from byte to short (16 bits):

$$
\begin{array}{r}
2=00000010 \Rightarrow ? ? ? ? ? ? ? ? 00000010 \\
-2=11111110 \Rightarrow ? ? ? ? ? ? ? ? 11111110
\end{array}
$$

$2=\underset{\text { (byte) }}{\stackrel{\rightharpoonup}{00000010} \Rightarrow \overrightarrow{0000000000000010}} \quad-2=\frac{\sqrt{11111110} \Rightarrow \overline{1111111111111110}}{\text { (short) }}$

Shifting

- Shifting: move the bits of a data type left or right
- Data bits falling off the edge are lost
- For left shifts, 0s fill in the empty bit places
- For right shifts, two options:
- Fill with 0 (logical shift): for non-numerical data
- Fill with MSB (arithmetic shift): for 2's complement numbers
- Shift left by n is equivalent to multiplying by 2^{n}
- Shift right by n is equivalent to dividing by 2^{n} and rounding towards $-\infty$
-

$$
\begin{aligned}
6=00000110 \ll 2 & \rightarrow 00011000=24 \\
6 & =00000110 \gg 2 \rightarrow 00000001=1 \\
-6=11111010 \gg 2 & \rightarrow 11111110=-2
\end{aligned}
$$

Hexadecimal notation

- Binary numbers (and other binary-encoded information) are too long and tedious for us (humans) to use
- Solution: use a more compact encoding
- Hexadecimal (base 16) is most common
- Hex digits: 0-9 and A-F
$-A=10_{\text {dec }}, B=11, \ldots, F=15$
- Conversion to/from binary is very easy:

Every 4 bits correspond to 1 hex digit

$$
\underbrace{1111}_{F(15)} \underbrace{1000}_{8}=0 x F 8
$$

Hex is just a convenience for humans
Computers use the binary form

Real numbers - floating point

- Java’s float (32 bits) double (64 bits)
- Binary representation:
- example 0.75 in base $10 \Rightarrow 0.11$ in base 2

$$
\stackrel{\downarrow}{\left(2^{-1}+2^{-2}=0.5+0.25=0.75\right)}
$$

Real numbers - floating point

- Java's float (32 bits) double (64 bits)
- Binary representation:
- example 0.75 in base $10 \Rightarrow 0.11$ in base 2

$$
\stackrel{\text { (2 }}{\left(2^{-1}+2^{-2}=0.5+0.25=0.75\right)}
$$

- Normalized form: one non-zero digit before the point

Mantissa

Why normalize?

Three reasons:

1. Simplifies machine representation
(don't need to represent the fraction separator)
2. Simplifies comparisons

- Which one is bigger: 0.0000101 or 0.000001 ?

$$
1.01 \times 2^{-5} \text { vs } 1.0 \times 2^{-6}
$$

3. Is more compact for very small/large numbers

- E.g., $0.0000000000000001=1.0 \times 2^{-16}$
or can be made more compact (by rounding fraction)

Floating point conversion example \#1

Convert the number 25 to floating point with normalization

1) 25 in base $10 \Rightarrow 11001$ in base 2
2)11001 to normalized floating point $\Rightarrow 1.1001 \mathrm{x} 2^{4}$

Understand that:

- The number is normalized
- 1.1001 is mantissa (aka significand)
- 4 is exponent
- sign is "+" (implicit here)

IEEE 754 Floating Point standard

- Need a standard to represent and compute with fixed-width floats
- 32 bit representation:

Note: representation does NOT use 2's complement

IEEE 754 Floating Point standard

- Need a standard to represent and compute with fixed-width floats
- 32 bit representation:

- 64 bit representation:
- exponent $=11$ bits; mantissa $=52$ bits

IEEE 754 Floating Point standard

- Why bias?
- Avoids the complexity of $+/-$ exponents
- Simplifies relative ordering of FP numbers
- Note: processors usually have specialized floating point units to perform FP arithmetic

IEEE 754 floating point conversion \#2

Example: Convert 23.5 (decimal) to IEEE 754 floating point

Start: 23 in base $10 \Rightarrow 10111$ in base 2

IEEE 754 floating point conversion \#2

Example: Convert 23.5 (decimal) to IEEE 754 floating point
Start: 23 in base $10 \Rightarrow 10111$ in base 2

1) 23.5 in base $10 \Rightarrow 10111.1$ in base 2
2) 10111.1 to normalized floating point $\Rightarrow 1.01111 \times 2^{4}$
3) $\mathrm{S}=0$
$\mathrm{M}=01111$ is mantissa (remember: " 1. ." is implicit) $\operatorname{Exp}=4+127=131$ in base $10 \Rightarrow 10000011$ in base 2

(s)
(exp)

IEEE 754: Special Values

Exponent	Mantissa	Meaning
0	0	0
$1-254$	Anything	Floating point number
$255(0 \mathrm{xFF})$	0	Infinity (signed)
$255(0 \mathrm{xFF})$	Non-zero	Not-a-number (NaN)

32-bit representation

Representing characters

- Characters need to be encoded in binary too
- Operations on characters have simpler requirements than on numbers, so the encoding choice is not crucial
- Most common representation is ASCII
- Each character is held in a byte
- E.g. ' 0 ' is $0 x 30$, ' A ' is $0 x 41$, ' a ' is $0 x 61$
- Java uses Unicode which can encode characters from all languages
- 16 bits per character

Representing strings

- Words, sentences, etc. are just strings of characters
- How is the end of a string identified?
- No common standard exists. Different programming languages use different encodings
- In C: a special character, encoded as $0 x 00$
- Also called NULL character
- In Java: string length is kept with the string itself
- string is an object and length is one of its member variables

Summary

- Computers use binary representation
- Signed numbers: sign-magnitude vs 2's complement
- Floating point
- Characters and strings

