
Informatics 1
Functional Programming Lecture 6

Map, filter, fold

Don Sannella
University of Edinburgh

Part I

Map

Squares

> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

Ords

> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

Map

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Squares, revisited

> squares [1,-2,3]
[1,4,9]

squares :: [Int] -> [Int]
squares xs = [x*x | x <- xs]

squares :: [Int] -> [Int]
squares [] = []
squares (x:xs) = x*x : squares xs

squares :: [Int] -> [Int]
squares xs = map sqr xs

where
sqr x = x*x

Map—how it works

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

map sqr [1,2,3]
=

[sqr x | x <- [1,2,3]]
=

[sqr 1] ++ [sqr 2] ++ [sqr 3]
=

[1, 4, 9]

Map—how it works

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map sqr [1,2,3]
=

map sqr (1 : (2 : (3 : [])))
=

sqr 1 : map sqr (2 : (3 : []))
=

sqr 1 : (sqr 2 : map sqr (3 : []))
=

sqr 1 : (sqr 2 : (sqr 3 : map sqr []))
=

sqr 1 : (sqr 2 : (sqr 3 : []))
=

1 : (4 : (9 : []))
=

[1, 4, 9]

Ords, revisited

> ords "a2c3"
[97,50,99,51]

ords :: [Char] -> [Int]
ords xs = [ord x | x <- xs]

ords :: [Char] -> [Int]
ords [] = []
ords (x:xs) = ord x : ords xs

ords :: [Char] -> [Int]
ords xs = map ord xs

Part II

Filter

Odds

> odds [1,2,3]
[1,3]

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

odds :: [Int] -> [Int]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

Digits

> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

Filter

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Odds, revisited

> odds [1,2,3]
[1,3]

odds :: [Int] -> [Int]
odds xs = [x | x <- xs, odd x]

odds :: [Int] -> [Int]
odds [] = []
odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

odds :: [Int] -> [Int]
odds xs = filter odd xs

Digits, revisited

> digits "a2c3"
"23"

digits :: [Char] -> [Char]
digits xs = [x | x <- xs, isDigit x]

digits :: [Char] -> [Char]
digits [] = []
digits (x:xs) | isDigit x = x : digits xs

| otherwise = digits xs

digits :: [Char] -> [Char]
digits xs = filter isDigit xs

Part III

Fold

Sum

> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Product

> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = x * product xs

Concatenate

> concat [[1,2,3],[4,5]]
[1,2,3,4,5]

> concat ["con","cat","en","ate"]
"concatenate"

concat :: [[a]] -> [a]
concat [] = []
concat (xs:xss) = xs ++ concat xss

And

> and [True, True, True]
True
> and [True, False, True]
False

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && and xs

Or

> or [False, False, False]
False
> or [False, True, False]
True

or :: [Bool] -> Bool
or [] = False
or (x:xs) = x || or xs

Foldr

foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

Foldr, with infix notation

foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = x ‘f‘ (foldr f v xs)

Sum, revisited

> sum [1,2,3,4]
10

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

Recall that (+) is the name of the addition function,
so x + y and (+) x y are equivalent.

Sum, Product, Concat, And, Or

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

product :: [Int] -> Int
product xs = foldr (*) 1 xs

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

and :: [Bool] -> Bool
and xs = foldr (&&) True xs

or :: [Bool] -> Bool
or xs = foldr (||) False xs

Sum—how it works

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

sum [1,2]
=

sum (1 : (2 : []))
=

1 + sum (2 : [])
=

1 + (2 + sum [])
=

1 + (2 + 0)
=

3

Sum—how it works, revisited

foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f v [] = v
foldr f v (x:xs) = x ‘f‘ (foldr f v xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

sum [1,2]
=

foldr (+) 0 [1,2]
=

foldr (+) 0 (1 : (2 : []))
=

1 + (foldr (+) 0 (2 : []))
=

1 + (2 + (foldr (+) 0 []))
=

1 + (2 + 0)
=

3

Part IV

Map, Filter, and Fold
All together now!

Sum of Squares of Odds

f :: [Int] -> Int
f xs = sum (squares (odds xs))

f :: [Int] -> Int
f xs = sum [x*x | x <- xs, odd x]

f :: [Int] -> Int
f [] = []
f (x:xs)

| odd x = (x*x) + f xs
| otherwise = f xs

f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter odd xs))

where
sqr x = x * x

