Informatics 1

Functional Programming Lecture 6

Map, filter, fold

Don Sannella

University of Edinburgh

Part 1

Map

Squares

> squares [1,-2,3]

[1,4,9]

squares :: [Int] —-> [Int]
squares xs = [x*x | x <— xs]
squares :: [Int] —-> [Int]
squares [] =[]

squares (xX:Xs) = X*X : sguares XS

Ords

> ords "aZ2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xs = [ord x | X <-= xs]
ords :: [Char] —> [Int]

ords [] =[]

ords (x:xs) = ord x : ords xs

map
map

map
map
map

—> [b]
<- xs]
—> [b]

Squares, revisited

> squares [1,-2,3]

[1,4,9]
squares :: [Int] —-> [Int]
squares Xs = [x*Xx | x <= x5]
squares :: [Int] —-> [Int]
squares [] =[]
squares (xX:Xs) = X*X : sguares XS
squares :: [Int] —-> [Int]
squares Xs = map Sgr XS
where

Sgr X = X*X

Map—how 1t works

map :: (a —> b) —-> [a] —-> [b]
map f xs = [£ x | x <= xs]

map sqgr [1,2,3]
[sgr x | x <= [1,2,3]]

[sgr 1 1] ++ [sgr 2] ++ [sqgr 3]

Map—how 1t works

map :: (a —> b) —-> [a] —-> [Db]
map £ [] =[]
map f (x:xs) = f x : map f xs
map sqr [1,2,3]
) map sqgr (1 (2 (3 [1)))
) sqr 1 : map sqgr (2 (3 [1))
) sqr 1 : (sqr 2 : map sqr (3 : [1))
) sgr 1 : (sqr 2 : (sqgqr 3 : map sqr []))
) sqr 1 (sqgr 2 (sgr 3 [1))
) 1 (4 (9 [1))
) [1, 4, 9]

Ords, revisited

> ords "aZ2c3"
[97,50,99,51]

ords :: [Char] —-> [Int]

ords xXs = [ord X | x <— xs]
ords :: [Char] —> [Int]

ords [] =[]

ords (x:xs) = ord x : ords xs
ords :: [Char] —> [Int]

ords xs = map ord xs

Part 11

Filter

Odds

> odds [1,2, 3]

[1, 3]

odds :: [Int] -> [Int]

odds xs = [X | x <= xs, odd x]

odds :: [Int] -> [Int]

odds [] =[]

odds (x:xs) | odd x = x : odds xs

| otherwise = odds xs

Digits

> digits "az2c3"

"23"

digits :: [Char] —-> [Char]

digits xs = [x | x <- xs, 1sDigit x]
digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | 1sDigit x = x : digits xs

| otherwise = digits xs

Filter

filter :: (a -> Bool) -> [a] —> [a]

filter p xs = [X | x <= x5, P X]

filter :: (a -> Bool) -> [a] —> [a]

filter p [] =[]

filter p (x:xs8) | p X = x : filter p xs

| otherwise = filter p Xxs

Odds, revisited

> odds [1,2, 3]

[1, 3]

odds :: [Int] -> [Int]

odds xs = [X | x <= xs, odd x]

odds :: [Int] -> [Int]

odds [] =[]

odds (x:xs) | odd x = x : odds xs
| otherwise = odds xs

odds :: [Int] -> [Int]

odds xs = filter odd xs

Digits, revisited

> digits "az2c3"

"23"

digits :: [Char] —-> [Char]

digits xs = [x | x <- xs, 1sDigit x]

digits :: [Char] —-> [Char]

digits [] =[]

digits (x:xs) | 1sDigit x = x : digits xs
| otherwise = digits xs

digits :: [Char] —-> [Char]

digits xs = filter 1sDigit xs

Part 111

Fold

Sum

> sum [1,2,3,4]
10

sum :: [Int] —-> Int
sum [] = 0
sum (x:xs) = X 4+ sum XS

Product

> product [1,2,3,4]
24

product :: [Int] -> Int
product [] = 1
product (x:xs) = X % product xs

Concatenate

> concat [[1,2,3]1,104,5]]
[1,2,3,4,5]

> concat ["con","cat","en", "ate"]
"concatenate"

concat :: [[a]] —> [a]

concat [] =[]

concat (xs:xss) = XxXs ++ concat xss

And

> and [True, True, True]

True

> and [True, False, True]
False

and :: [Bool] —-> Bool
and [] = True

and (x:xs) = X && and xs

Or

> or [False, False, False]
False
> or [False, True, False]

True
or :: [Bool] —> Bool
or [] = False

or (X:x8) = x || or xs

Foldr

foldr :: (a —> a -> a) —-> a —> [a] —-> a
foldr £ v [] = Vv
foldr £ v (x:Xs8) = f x (foldr £ v xs)

Foldr, with infix notation

foldr :: (a —> a -> a) —-> a —> [a] —-> a
foldr £ v [] = Vv

foldr £ v (x:Xs8) = x ‘f' (foldr £ v xs)

Sum, revisited

> sum [1,2,3,4]

10

sum :: [Int] —-> Int

sum [] = 0

sum (x:xs) = X 4+ sum XS
sum :: [Int] —> Int

sum xs = foldr (+) 0 xs

Recall that (+) 1s the name of the addition function,
so x + y and (+) x vy areequivalent.

Sum, Product, Concat, And, Or

sum :: [Int] —-> Int

sum XS = foldr (+) 0 xs
product :: [Int] —> Int
product xs = foldr (%) 1 xs
concat :: [[al] —> [a]
concat xs = foldr (++) [] xs
and :: [Bool] —> BRool

and Xs = foldr (&&) True Xs
or :: [Bool] —> Bool

Oor XS = foldr (||) False xs

Sum—how it works

sum :: [Int] —> Int
sum [] = 0
sum (x:xs) = X 4+ sum XS

sum [1, 2]

Sum—how 1t works, revisited

foldr :: (a —> a —> a) —-> a —-—> [a] —-—> a
foldr £ v [] = Vv

foldr £ v (x:Xs) = x ‘Yf' (foldr £ v xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

sum [1,2]

foldr (+) O (1 : (2 : []))

1 + (foldr (+) 0 (2 : [1))

1 + (2 + (foldr (+) 0 []))

1 + (2 + 0)

Part IV

Map, Filter, and Fold
All together now!

Sum of Squares of Odds

f :: [Int] —-> Int
f xs = sum (squares (odds xs))
f :: [Int] —-> Int
f xs = sum [x*x | x <- xs, odd x]
f :: [Int] —-> Int
£ [] =[]
f (x:x8)
| odd x = (xxx) + f xs
| otherwise = f xs
f :: [Int] —-> Int
f xs = foldr (+) O (map sqr (filter odd xs))
where

sqr x = X % X

