
Informatics 1A
Functional Programming Lecture 8

Lambda expressions

Don Sannella
University of Edinburgh

Part I

Currying

How to add two numbers

add :: Int -> Int -> Int
add x y = x + y

add 3 4
=

3 + 4
=

7

How to add two numbers

add :: Int -> (Int -> Int)
(add x) y = x + y

(add 3) 4
=

3 + 4
=

7

A function of two numbers
is the same as

a function of the first number that returns
a function of the second number.

Currying

add :: Int -> (Int -> Int)
add x = g

where
g :: Int -> Int
g y = (x + y)

(add 3) 4
=

g 4 where g y = 3 + y
=

3 + 4
=

7

This idea is named for Haskell Curry (1900–1982).
It also appears in the work of Moses Schönfinkel (1889–1942),

and Gottlob Frege (1848–1925).

Partial evaluation

foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f u [] = u
foldr f u (x:xs) = f x (foldr f u xs)

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

is equivalent to

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f u [] = u
foldr f u (x:xs) = f x (foldr f u xs)

sum :: [Int] -> Int
sum = foldr (+) 0

Sum, Product, Concat, And, Or

sum :: [Int] -> Int
sum xs = foldr (+) 0 xs

product :: [Int] -> Int
product xs = foldr (*) 1 xs

concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs

and :: [Bool] -> Bool
and xs = foldr (&&) True xs

or :: [Bool] -> Bool
or xs = foldr (||) False xs

Sum, Product, Concat, And, Or: simplified

sum :: [Int] -> Int
sum = foldr (+) 0

product :: [Int] -> Int
product = foldr (*) 1

concat :: [[a]] -> [a]
concat = foldr (++) []

and :: [Bool] -> Bool
and = foldr (&&) True

or :: [Bool] -> Bool
or = foldr (||) False

Part II

Lambda expressions

A failed attempt to simplify

f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above cannot be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0 (map (x * x) (filter (x > 0) xs))

A successful attempt to simplify

f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))

where
sqr x = x * x
pos x = x > 0

The above can be simplified to the following:

f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

Lambda calculus

f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

The character \ stands for λ, the Greek letter lambda.

Logicians write

\x -> x > 0 as λx. x > 0

\x -> x * x as λx. x× x.

Lambda calculus is due to the logician Alonzo Church (1903–1995).

Evaluating lambda expressions

(\x -> x > 0) 3
=

3 > 0
=

True

(\x -> x * x) 3
=

3 * 3
=

9

Lambda expressions and currying

(\x y -> x + y) 3 4
=

((\x -> (\y -> x + y)) 3) 4
=

(\y -> 3 + y) 4
=

3 + 4
=

7

The beta rule

The general rule for evaluating lambda expressions is called the β rule, after the
Greek letter beta:

(λx.N)M = N [x :=M]

Here N and M are arbitrary expressions, and N [x :=M] is N with each free
occurrence of x replaced by M .

(λx y. x+ y) 3 4

= ((λx. (λy. x+ y)) 3) 4

= ((λy. x+ y))[x := 3]) 4

= (λy. 3 + y) 4

= (3 + y)[y := 4]

= 3 + 4

= 7

Part III

Sections

Sections

(> 0) stands for(\x -> x > 0)

(2 *) stands for(\x -> 2 * x)

(+ 1) stands for(\x -> x + 1)

(2 ˆ) stands for(\x -> 2 ˆ x)

(ˆ 2) stands for(\x -> x ˆ 2)

Sections

f :: [Int] -> Int
f xs = foldr (+) 0

(map (\x -> x * x)
(filter (\x -> x > 0) xs))

f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

Part IV

Composition

Composition

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

Evaluating composition

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

sqr :: Int -> Int
sqr x = x * x

pos :: Int -> Bool
pos x = x > 0

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Compare and contrast

possqr :: Int -> Bool
possqr x = pos (sqr x)

possqr 3
=

pos (sqr 3)
=

pos 9
=

True

possqr :: Int -> Bool
possqr = pos . sqr

possqr 3
=

(pos . sqr) 3
=

pos (sqr 3)
=

pos 9
=

True

Composition is associative

(f · g) · h = f · (g · h)

((f . g) . h) x
=

(f . g) (h x)
=

f (g (h x))
=

f ((g . h) x)
=

(f . (g . h)) x

Thinking functionally

f :: [Int] -> Int
f xs = foldr (+) 0 (map (ˆ 2) (filter (> 0) xs))

f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

Applying the function

f :: [Int] -> Int
f = foldr (+) 0 . map (ˆ 2) . filter (> 0)

f [1, -2, 3]
=

(foldr (+) 0 . map (ˆ 2) . filter (> 0)) [1, -2, 3]
=

foldr (+) 0 (map (ˆ 2) (filter (> 0) [1, -2, 3]))
=

foldr (+) 0 (map (ˆ 2) [1, 3])
=

foldr (+) 0 [1, 9]
=

10

