Informatics 1A

Functional Programming Lecture 8

Lambda expressions

Don Sannella

University of Edinburgh

Part 1

Currying

How to add two numbers

add :: Int —> Int —> Int
add x vy = x + vy

add 3 4

How to add two numbers

add :: Int —-> (Int —-> Int)
(add x) v = x + vy

(add 3) 4

3+ 4

A function of two numbers
1s the same as
a function of the first number that returns
a function of the second number.

Currying

add :: Int -> (Int —> Int)
add x = g

where

g :: Int —-> Int

gy = (x +tvV)

(add 3) 4

g 4 where g v = 3 + vy
3 + 4

7

This 1dea is named for Haskell Curry (1900-1982).
It also appears in the work of Moses Schonfinkel (1889—1942),
and Gottlob Frege (1848—1925).

Partial evaluation

foldr :: (a —> a —> a) —-—> a —> [a] —>
foldr £ u [] = u

foldr £ u (x:xXs) = f x (foldr £ u xs)
sum :: [Int] —-> Int

sum xs = foldr (+) 0 xs

is equivalent to

foldr :: (a —> a —> a) —-> a —> ([a] —-> a)
foldr £ u [] = u
foldr £ u (x:x8) = f x (foldr £ u xs)

sum :: [Int] —> Int
sum = foldr (+) O

Sum, Product, Concat, And, Or

sum :: [Int] —-> Int

sum XxXs = foldr (+) 0 xs
product :: [Int] —> Int
product xs = foldr (%) 1 xs
concat :: [[al] —> [a]
concat xs = foldr (++) [] xs
and :: [Bool] —> BRool

and XxXs = foldr (&&) True Xs
or :: [Bool] —> Bool

Oor XS = foldr (||) False xs

Sum, Product, Concat, And, Or: simplified

sum :: [Int] —-> Int
sum = foldr (+) O
product :: [Int] —> Int
product = foldr (%) 1
concat :: [[al] —> [a]
concat = foldr (++) []
and :: [Bool] —> BRool
and = foldr (&&) True
or :: [Bool] —> Bool

or = foldr (|]|) False

Part 11

Lambda expressions

A failed attempt to simplify

f :: [Int] —-> Int

f xs = foldr (+) O (map sqgqr (filter pos xs))
where
sgr x = X * X
pos x = x >0

The above cannot be simplified to the following:

f :: [Int] —-> Int
f xs = foldr (+) 0 (map (x » x) (filter (x > 0) xs))

A successful attempt to simplify

f :: [Int] —-> Int

f xs = foldr (+) O (map sqgqr (filter pos xs))
where
sgr x = X * X
pos x = x >0

The above can be simplified to the following:

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

[LLambda calculus

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

The character \ stands for A, the Greek letter lambda.
Logicians write

\x —> x >0 as Mx.x>0

\X —> X * X aS A\xr.x X .

Lambda calculus is due to the logician Alonzo Church (1903-1995).

Evaluating lambda expressions

(\x —> x > 0) 3
3 >0

True

Lambda expressions and currying

(\x v —> x + vy) 3 4

((\x —> (\y —> x + vy)) 3) 4
(\y => 3 + vy) 4

3+ 4

7

The beta rule

The general rule for evaluating lambda expressions is called the 3 rule, after the
Greek letter beta:
(M. N) M = N|x := M]

Here N and M are arbitrary expressions, and N |[x := M| is N with each free
occurrence of x replaced by M.

Ary.x+y) 34
(Ax. (A\y.x+1y))3)4
(Ay.z +y))|z = 3]) 4

Part 111

Sections

Sections

stands for (\ x
stands for (\ x
stands for (\x
stands for (\ x

stands for (\x

Sections

f :: [Int] —-> Int
f xs = foldr (+) O
(map (\x —> x * X)
(filter (\x -> x > 0) xs))

f :: [Int] —-> Int
f xs = foldr (+) 0O (map (° 2) (filter (> 0) xs))

Part IV

Composition

Composition

(.) 22 (b —>¢c) —> (a —> b)) —> (a —> <)
(f . g) x = £ (g x)

Evaluating composition

(.) :: (b —>c) -—> (a —> b) -—> (a —> c)

(f . g) x = £ (g x)
sgr :: Int —-> Int
sgqr x = X * X

pos :: Int —-> Bool
pos x = x >0

(pos . sqgr) 3
pos (sgr 3)
pos 9

True

Compare and contrast

possgr :: Int —> Bool
possgr X = POs (sgr Xx)

possqr 3
pos (sqgr 3)
pos 9

True

possgr :: Int —> Bool
possgr = PpPOsS . sgr
possgr 3

(pos . sqgr) 3
pos (sgr 3)
pos 9

True

Composition 1s associative

(f-9)-h=f-(g-h)

Thinking functionally

f :: [Int] —-> Int
f xs = foldr (+) 0O (map (° 2) (filter (> 0) xs))
f :: [Int] —-> Int

f = foldr (+) 0 . map (° 2) . filter (> 0)

Applying the function

f :: [Int] —-> Int
f foldr (+) 0O . map (° 2) . filter (> 0)

(foldr (+) 0 . map (° 2) . filter (> 0))
foldr (+) 0 (map (° 2) (filter (> 0) [1,
foldr (+) 0 (map (° 2) [1, 31])

