Informatics 1A Functional Programming Lecture 8

Lambda expressions

Don Sannella University of Edinburgh

Part I

Currying

How to add two numbers

```
add :: Int -> Int -> Int
add x y = x + y
add 3 4
=
3 + 4
=
7
```

How to add two numbers

A function of two numbers is the same as a function of the first number that returns a function of the second number.

Currying

```
add :: Int -> (Int -> Int)
add \mathbf{x} = \mathbf{q}
  where
  q :: Int -> Int
  g y = (x + y)
  (add 3) 4
=
  g 4 where g y = 3 + y
=
  3 + 4
=
  7
```

This idea is named for *Haskell Curry* (1900–1982). It also appears in the work of *Moses Schönfinkel* (1889–1942), and *Gottlob Frege* (1848–1925).

Partial evaluation

```
foldr :: (a \rightarrow a \rightarrow a) \rightarrow a \rightarrow [a] \rightarrow a
foldr f u [] = u
foldr f u (x:xs) = f x (foldr f u xs)
```

```
sum :: [Int] \rightarrow Int
sum xs = foldr (+) 0 xs
```

is equivalent to

foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f u [] = u
foldr f u (x:xs) = f x (foldr f u xs)

sum :: $[Int] \rightarrow Int$ sum = foldr (+) 0

Sum, Product, Concat, And, Or

sum	:: [Int] -> Int
sum xs	= foldr (+) 0 xs
product	:: [Int] -> Int
product <mark>xs</mark>	= foldr (*) 1 xs
concat	:: [[a]] -> [a]
concat <mark>xs</mark>	= foldr (++) [] xs
and	:: [Bool] -> Bool
and xs	= foldr (&&) True xs
or or xs	<pre>:: [Bool] -> Bool = foldr () False xs</pre>

Sum, Product, Concat, And, Or: simplified

sum	::	[Int] -> Int
sum	=	foldr (+) 0
product	::	[Int] -> Int
product	=	foldr (*) 1
concat	::	[[a]] -> [a]
concat	=	foldr (++) []
and	::	[Bool] -> Bool
and	=	foldr (&&) True
or	::	[Bool] -> Bool
or	=	foldr () False

Part II

Lambda expressions

A failed attempt to simplify

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
where
sqr x = x * x
pos x = x > 0
```

The above *cannot* be simplified to the following:

f :: [Int] -> Int f xs = foldr (+) 0 (map (x * x) (filter (x > 0) xs))

A successful attempt to simplify

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
where
sqr x = x * x
pos x = x > 0
```

The above *can* be simplified to the following:

```
f :: [Int] -> Int
f xs = foldr (+) 0
        (map (\x -> x * x)
              (filter (\x -> x > 0) xs))
```

Lambda calculus

```
f :: [Int] -> Int
f xs = foldr (+) 0
        (map (\x -> x * x)
              (filter (\x -> x > 0) xs))
```

The character \setminus stands for λ , the Greek letter *lambda*.

Logicians write

 $\langle x \rightarrow x \rangle = 0$ as $\lambda x. x > 0$ $\langle x \rightarrow x \star x$ as $\lambda x. x \times x.$

Lambda calculus is due to the logician *Alonzo Church* (1903–1995).

Evaluating lambda expressions

$$(\x -> x > 0) 3$$
 $(\x -> x * x) 3$
= (\x -> x * x) 3
= 3 > 0 3 * 3
= True 9

Lambda expressions and currying

$$(\langle x \ y \ -> \ x \ + \ y) \ 3 \ 4$$

$$= (\langle x \ -> \ (\langle y \ -> \ x \ + \ y)) \ 3) \ 4$$

$$= (\langle y \ -> \ 3 \ + \ y) \ 4$$

$$= 3 \ + \ 4$$

$$= 7$$

The beta rule

The general rule for evaluating lambda expressions is called the β rule, after the Greek letter beta:

$$(\lambda x. N) M = N[x := M]$$

Here N and M are arbitrary expressions, and N[x := M] is N with each free occurrence of x replaced by M.

$$(\lambda x y. x + y) 3 4$$

$$= ((\lambda x. (\lambda y. x + y)) 3) 4$$

$$= ((\lambda y. x + y))[x := 3]) 4$$

$$= (\lambda y. 3 + y) 4$$

$$= (3 + y)[y := 4]$$

$$= 3 + 4$$

$$= 7$$

Part III

Sections

Sections

- (> 0) stands for $(\backslash x \rightarrow x > 0)$
- (2 *) stands for $(\langle x \rangle 2 * x)$
- (+ 1) stands for $(x \rightarrow x + 1)$
- $(2) stands for (\langle x -> 2 \rangle x)$
- (2) stands for $(x \rightarrow x 2)$

Sections

```
f :: [Int] -> Int
f xs = foldr (+) 0
                (map (\x -> x * x)
                    (filter (\x -> x > 0) xs))
```

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map (^ 2) (filter (> 0) xs))
```

Part IV

Composition

Composition

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

(f . g) x = f (g x)

Evaluating composition

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
(f . g) x = f (g x)
sqr :: Int -> Int
sqr x = x \star x
pos :: Int -> Bool
pos x = x > 0
(pos . sqr) 3
=
pos (sqr 3)
=
pos 9
=
  True
```

Compare and contrast

```
possqr :: Int -> Bool possqr :: Int -> Bool
possqr x = pos (sqr x) 	 possqr = pos . sqr
 possqr 3
=
 pos (sqr 3)
=
pos 9
=
 True
```

```
possqr 3
=
 (pos . sqr) 3
=
 pos (sqr 3)
=
pos 9
=
 True
```

Composition is associative

$$(f \cdot g) \cdot h = f \cdot (g \cdot h)$$

Thinking functionally

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map (^ 2) (filter (> 0) xs))
f :: [Int] -> Int
f = foldr (+) 0 . map (^ 2) . filter (> 0)
```

Applying the function

```
f :: [Int] -> Int
f = foldr (+) 0 . map (^2) . filter (> 0)
  f [1, -2, 3]
=
   (foldr (+) 0 . map (^ 2) . filter (> 0)) [1, -2, 3]
=
   foldr (+) 0 (map (^ 2) (filter (> 0) [1, -2, 3]))
=
   foldr (+) 0 (map (^ 2) [1, 3])
=
   foldr (+) 0 [1, 9]
=
   10
```