Informatics 1A
 Functional Programming Lecture 8

Lambda expressions

Don Sannella
University of Edinburgh

Part I

Currying

How to add two numbers

```
add :: Int -> Int -> Int
add x y = x + y
    add 3 4
=
    3+4
=
    7
```


How to add two numbers

```
add :: Int -> (Int -> Int)
(add x) y = x + y
    (add 3) 4
=
    3+4
=
    7
```

A function of two numbers
is the same as
a function of the first number that returns a function of the second number.

Currying

```
add :: Int -> (Int -> Int)
add x = g
    where
    g :: Int -> Int
    g y = (x + y)
    (add 3) 4
=
    g 4 where g y = 3 + y
=
    3+4
=
    7
```

This idea is named for Haskell Curry (1900-1982). It also appears in the work of Moses Schönfinkel (1889-1942), and Gottlob Frege (1848-1925).

Partial evaluation

```
foldr :: (a -> a -> a) -> a -> [a] -> a
foldr f u [] = u
foldr f u (x:xs) = f x (foldr f u xs)
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs
    is equivalent to
foldr :: (a -> a -> a) -> a -> ([a] -> a)
foldr f u [] = u
foldr f u (x:xs) = f x (foldr f u xs)
sum :: [Int] -> Int
sum = foldr (+) 0
```


Sum, Product, Concat, And, Or

```
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs
product :: [Int] -> Int
product xs = foldr (*) 1 xs
concat :: [[a]] -> [a]
concat xs = foldr (++) [] xs
and :: [Bool] -> Bool
and xS = foldr (&&) True XS
or :: [Bool] -> Bool
or xs = foldr (||) False xs
```


Sum, Product, Concat, And, Or: simplified

```
sum :: [Int] -> Int
sum = foldr (+) 0
product : : [Int] -> Int
product = foldr (*) 1
concat :: [[a]] -> [a]
concat = foldr (++) []
and :: [Bool] -> Bool
and = foldr (&&) True
or :: [Bool] -> Bool
Or = foldr (||) False
```


Part II

Lambda expressions

A failed attempt to simplify

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
    where
    sqr x = x * x
    pos x = x > 0
```

The above cannot be simplified to the following:

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map (x * x) (filter (x > 0) xs))
```


A successful attempt to simplify

```
f :: [Int] -> Int
f xs = foldr (+) 0 (map sqr (filter pos xs))
    where
    sqr x = x * x
    pos x = x > 0
```

The above can be simplified to the following:

```
f :: [Int] -> Int
f xs = foldr (+) 0
    (map (\x -> x * x)
    (filter (\x -> x > 0) xs))
```


Lambda calculus

```
f :: [Int] -> Int
f xs = foldr (+) 0
    (map (\x -> x * x)
        (filter (\x -> x > 0) xs))
```

The character \backslash stands for λ, the Greek letter lambda.
Logicians write

$$
\begin{aligned}
& \backslash \mathrm{x}->\mathrm{x}>0 \\
& \backslash \mathrm{x}->\mathrm{x} * \mathrm{x}
\end{aligned} \quad \text { as } \quad \lambda x \cdot x>0 . x \times x .
$$

Lambda calculus is due to the logician Alonzo Church (1903-1995).

Evaluating lambda expressions

$$
\begin{aligned}
& =(\backslash x->x>0) 3 \\
& =3>0 \\
& =3 \\
& \quad \text { True }
\end{aligned}
$$

$$
\begin{aligned}
&=(\backslash x->x * x) 3 \\
&= 3 * 3 \\
& 9
\end{aligned}
$$

Lambda expressions and currying

$$
\begin{aligned}
& (\backslash x y->x+y) 34 \\
= & ((\backslash x->(\backslash y->x+y)) 3) 4 \\
= & (\backslash y->3+y) 4 \\
= & 3+4 \\
= & 7
\end{aligned}
$$

The beta rule

The general rule for evaluating lambda expressions is called the β rule, after the Greek letter beta:

$$
(\lambda x . N) M=N[x:=M]
$$

Here N and M are arbitrary expressions, and $N[x:=M]$ is N with each free occurrence of x replaced by M.

$$
\begin{aligned}
& (\lambda x y \cdot x+y) 34 \\
= & ((\lambda x \cdot(\lambda y \cdot x+y)) 3) 4 \\
= & ((\lambda y \cdot x+y))[x:=3]) 4 \\
= & (\lambda y \cdot 3+y) 4 \\
= & (3+y)[y:=4] \\
= & 3+4 \\
= & 7
\end{aligned}
$$

Part III

Sections

Sections

$$
\left.\begin{array}{l}
(>0) \text { stands for }(\backslash \mathrm{x}->\mathrm{x}>0) \\
\binom{2}{*} \text { stands for }(\backslash \mathrm{x}->2 \times \mathrm{x}) \\
(+1) \operatorname{stands} \text { for }(\backslash \mathrm{x}->\mathrm{x}+1) \\
\left(\begin{array}{l}
2
\end{array}\right) \operatorname{stands} \text { for }(\backslash \mathrm{x}->2 \wedge \mathrm{x}) \\
(\wedge 2) \operatorname{stands} \text { for }(\backslash \mathrm{x}->\mathrm{x} \wedge
\end{array}\right)
$$

Sections

```
f :: [Int] -> Int
f xs = foldr (+) 0
    (map (\x -> x * x)
        (filter (\x -> x > 0) xs))
f :: [Int] -> Int
f xs = foldr (+) 0 (map (^ 2) (filter (> 0) xs))
```


Part IV

Composition

Composition

$$
\begin{aligned}
& (.)::(b->c)->(a->b) \rightarrow(a->c) \\
& (f . g) x=f(g x)
\end{aligned}
$$

Evaluating composition

```
(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f.g) x = f (g x)
sqr :: Int -> Int
sqr x = x * x
pos :: Int -> Bool
pos x = x > 0
    (pos . sqr) 3
=
    pos (sqr 3)
=
    pos 9
=
    True
```


Compare and contrast

```
possqr :: Int -> Bool
possqr x = pos (sqr x)
    possqr 3
=
    pos (sqr 3)
=
    pos 9
=
    True
```

```
possqr :: Int -> Bool
possqr = pos . sqr
    possqr 3
=
    (pos . sqr) 3
=
    pos (sqr 3)
=
    pos 9
=
    True
```


Composition is associative

$$
\begin{aligned}
& (f \cdot g) \cdot h=f \cdot(g \cdot h) \\
= & ((f \cdot g) \cdot h) \mathrm{x} \\
= & (\mathrm{f} \cdot \mathrm{~g})(\mathrm{hx}) \\
= & \mathrm{f}(\mathrm{~g}(\mathrm{hx})) \\
= & \mathrm{f}((\mathrm{~g} \cdot \mathrm{~h}) \mathrm{x}) \\
& (\mathrm{f} \cdot(\mathrm{~g} \cdot \mathrm{~h})) \mathrm{x}
\end{aligned}
$$

Thinking functionally

```
f : : [Int] -> Int
f xs = foldr (+) 0 (map (^ 2) (filter (> 0) xs))
f :: [Int] -> Int
f = foldr (+) 0.map (^ 2) . filter (> 0)
```


Applying the function

```
f :: [Int] -> Int
f = foldr (+) 0 . map (^ 2) . filter (> 0)
    f [1, -2, 3]
= 
    (foldr (+) 0 . map (^ 2) . filter (> 0)) [1, -2, 3]
=
    foldr (+) 0 (map (^ 2) (filter (> 0) [1, -2, 3]))
=
    foldr (+) 0 (map (` 2) [1, 3])
=
    foldr (+) 0 [1, 9]
=
    1 0
```

