
Informatics 1A
Functional Programming Lecture 9

Algebraic Data Types

Don Sannella
University of Edinburgh

Part I

Algebraic types

Everything is an algebraic type

data Bool = False | True
data Season = Winter | Spring | Summer | Fall
data Shape = Circle Float | Rectangle Float Float
data List a = Nil | Cons a (List a)
data Nat = Zero | Succ Nat
data Exp = Lit Int | Add Exp Exp | Mul Exp Exp
data Tree a = Empty | Leaf a | Branch (Tree a) (Tree a)
data Maybe a = Nothing | Just a
data Pair a b = Pair a b
data Either a b = Left a | Right b

Part II

Boolean

Boolean

import Prelude
hiding (Bool(True, False), (&&), (||), not)

data Bool = False | True
deriving (Eq, Show)

not :: Bool -> Bool
not False = True
not True = False

(&&) :: Bool -> Bool -> Bool
False && q = False
True && q = q

(||) :: Bool -> Bool -> Bool
False || q = q
True || q = True

Boolean — eq and show

eqBool :: Bool -> Bool -> Bool
eqBool False False = True
eqBool False True = False
eqBool True False = False
eqBool True True = True

showBool :: Bool -> String
showBool False = "False"
showBool True = "True"

Part III

Seasons

Seasons

data Season = Winter | Spring | Summer | Fall
deriving (Eq, Show)

next :: Season -> Season
next Winter = Spring
next Spring = Summer
next Summer = Fall
next Fall = Winter

Seasons—eq and show

eqSeason :: Season -> Season -> Bool
eqSeason Winter Winter = True
eqSeason Spring Spring = True
eqSeason Summer Summer = True
eqSeason Fall Fall = True
eqSeason x y = False

showSeason :: Season -> String
showSeason Winter = "Winter"
showSeason Spring = "Spring"
showSeason Summer = "Summer"
showSeason Fall = "Fall"

Seasons and integers

toInt :: Season -> Int
toInt Winter = 0
toInt Spring = 1
toInt Summer = 2
toInt Fall = 3

fromInt :: Int -> Season
fromInt 0 = Winter
fromInt 1 = Spring
fromInt 2 = Summer
fromInt 3 = Fall

next’ :: Season -> Season
next’ x = fromInt ((toInt x + 1) ‘mod‘ 4)

eqSeason’ :: Season -> Season -> Bool
eqSeason’ x y = (toInt x == toInt y)

Part IV

Shape

Shape

type Radius = Float
type Width = Float
type Height = Float

data Shape = Circle Radius
| Rect Width Height

deriving (Eq, Show)

area :: Shape -> Float
area (Circle r) = pi * rˆ2
area (Rect w h) = w * h

Shape—eq and show

eqShape :: Shape -> Shape -> Bool
eqShape (Circle r) (Circle r’) = (r == r’)
eqShape (Rect w h) (Rect w’ h’) = (w == w’) && (h == h’)
eqShape x y = False

showShape :: Shape -> String
showShape (Circle r) = "Circle " ++ showF r
showShape (Rect w h) = "Rect " ++ showF w ++ " " ++ showF h

showF :: Float -> String
showF x | x >= 0 = show x

| otherwise = "(" ++ show x ++ ")"

Shape—tests and selectors

isCircle :: Shape -> Bool
isCircle (Circle r) = True
isCircle (Rect w h) = False

isRect :: Shape -> Bool
isRect (Circle r) = False
isRect (Rect w h) = True

radius :: Shape -> Float
radius (Circle r) = r

width :: Shape -> Float
width (Rect w h) = w

height :: Shape -> Float
height (Rect w h) = h

Shape—pattern matching

area :: Shape -> Float
area (Circle r) = pi * rˆ2
area (Rect w h) = w * h

area’ :: Shape -> Float
area’ s =

if isCircle s then
let

r = radius s
in

pi * rˆ2
else if isRect s then

let
w = width s
h = height s

in
w * h

else error "impossible"

Part V

Lists

Lists

import Prelude hiding ((++), map, filter)

data List a = Nil
| Cons a (List a)

deriving (Eq, Show)

(++) :: List a -> List a -> List a
Nil ++ ys = ys
(Cons x xs) ++ ys = Cons x (xs ++ ys)

map :: (a -> b) -> List a -> List b
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

filter :: (a -> Bool) -> List a -> List a
filter p Nil = Nil
filter p (Cons x xs) | p x = Cons x (filter p xs)

| otherwise = filter p xs

Part VI

Natural numbers

Defining arithmetic by recursion (wrong)

import Prelude hiding ((+), (*), (ˆ))

(+) :: Int -> Int -> Int
m + 0 = m
m + n = (m + (n-1)) + 1

(*) :: Int -> Int -> Int
m * 0 = 0
m * n = (m * (n-1)) + m

(ˆ) :: Int -> Int -> Int
m ˆ 0 = 1
m ˆ n = (m ˆ (n-1)) * m

Defining arithmetic by recursion (right)

import Prelude hiding ((+), (*), (ˆ))

data Nat = Zero
| Succ Nat

deriving (Eq, Show)

(+) :: Nat -> Nat -> Nat
Zero + n = n
(Succ m) + n = Succ (m + n)

(*) :: Nat -> Nat -> Nat
Zero * n = Zero
(Succ m) * n = (m * n) + n

(ˆ) :: Nat -> Nat -> Nat
m ˆ Zero = Succ Zero
m ˆ (Succ n) = (m ˆ n) * m

