Informatics 1A
Functional Programming Lectures 12–13

Data Types and
Data Abstraction

Don Sannella
University of Edinburgh
Part I

2022 Inf1A FP Competition
2022 Inf1A FP Competition

- Prizes: Book tokens. And glory!
- Number of prizes depend on number and quality of entries.
- Write a Haskell program with interesting graphics. Be creative!
- Previous year’s entries are online:
- Sponsored by Galois (galois.com)
- Submit code and image(s), list everyone who contributed.
- E-mail submissions
 To: Younwoo Jeong <younwool1650@gmail.com>
 Subject: 2022 Inf1A FP Competition
- Submit by: 4pm Monday 21 November
- Prizes awarded: 9am Tuesday 29 November
Part II

Efficiency and O-notation
Premature optimization is the root of all evil.

— Donald Knuth —
Premature optimization is the root of all evil in programming.

— Tony Hoare —
Left vs. Right

Let \(xss = [xs_1, \ldots, xs_m] \) consist of \(m \) lists each of length \(n \).

Associated to the left, \(\text{foldl} \ (++) \ [\] \ xss \).

\[
((([] ++ xs_1) ++ xs_2) ++ xs_3) \cdots ++ xs_m
\]

Number of steps

\[
0 + n + 2n + 3n + \ldots + (m - 1)n = O(m^2n)
\]

\(m \) times

Associated to the right, \(\text{foldr} \ (++) \ [\] \ xss \).

\[
xs_1 ++ \cdots (xs_{m-2} ++ (xs_{m-1} ++ (xs_m ++ [])))
\]

Number of steps

\[
\underbrace{n + n + n + \cdots + n}_m = O(mn)
\]

\(m \) times

steps. When \(m = 1000 \), the first is a thousand times slower than the second!
\[t = n \text{ vs } t = n^2 \]
$t = 2n \text{ vs } t = 0.5n^2$
Big-O notation

Definition We say f is $O(g)$ when g is an upper bound for f, for big enough inputs. To be precise, f is $O(g)$ if there are constants c and m such that $f(n) \leq cg(n)$ for all $n \geq m$.

For instance: $2n + 10$ is $O(n)$ because $2n + 10 \leq 4n$ for all $n \geq 5$.
Big-O notation

Definition We say f is $O(g)$ when g is an upper bound for f, for big enough inputs. To be precise, f is $O(g)$ if there are constants c and m such that $f(n) \leq cg(n)$ for all $n \geq m$.

For instance: $2n + 10$ is $O(n)$ because $2n + 10 \leq 4n$ for all $n \geq 5$.

Constant factors don’t matter

$O(n) = O(an + b)$, for any a and b

$O(n^2) = O(an^2 + bn + c)$, for any a, b, and c

$O(n^3) = O(an^3 + bn^2 + cn + d)$, for any a, b, c, and d

$O(log_2(n)) = O(log_{10}(n))$
$O(n), O(n^2), O(n^3), O(n^4)$
$O(\log n), O(n), O(n \log n), O(2^n)$
\(O(\log n) \), \(O(n \log n) \), \(O(2^n) \)

\(O(\log n) \) “logarithmic”: divide and conquer search algorithms

\(O(n) \) “linear”: normal list search algorithms

\(O(n \log n) \): sorting algorithms

\(O(2^n) \) “exponential”: tautology checking
Part III

Sets as lists
module List
 (Set, empty, insert, set, element, equal) where
import Test.QuickCheck

type Set a = [a]

empty :: Set a
empty = []

insert :: a -> Set a -> Set a
insert x xs = x:xs

set :: [a] -> Set a
set xs = xs
element :: Eq a => a -> Set a -> Bool
x `element` xs = x `elem` xs

equal :: Eq a => Set a -> Set a -> Bool
xs `equal` ys = xs `subset` ys && ys `subset` xs
 where
 xs `subset` ys = and [x `elem` ys | x <- xs]
prop_element :: [Int] -> Bool
prop_element ys =
 and [x `element` s == odd x | x <- ys]
where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_element

-- Prelude List> check
-- +++ OK, passed 100 tests.
Part IV

Sets as *ordered* lists
module OrderedList
 (Set, empty, insert, set, element, equal) where

import Data.List (nub, sort)
import Test.QuickCheck

type Set a = [a]

invariant :: Ord a => Set a -> Bool
invariant xs =
 and [x < y | (x, y) <- zip xs (tail xs)]
empty :: Set a
empty = []

insert :: Ord a => a -> Set a -> Set a
insert x [] = [x]
insert x (y:ys) | x < y = x : y : ys
 | x == y = y : ys
 | x > y = y : insert x ys

set :: Ord a => [a] -> Set a
set xs = nub (sort xs)
element :: Ord a => a -> Set a -> Bool
x 'element' [] = False
x 'element' (y:ys) | x < y = False
| x == y = True
| x > y = x 'element' ys

equal :: Eq a => Set a -> Set a -> Bool
xs 'equal' ys = xs == ys
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x 'element' s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

Prelude OrderedList> check
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.
Part V

Sets as ordered trees
module Tree
 (Set (Nil, Node), empty, insert, set, element, equal) where

import Test.QuickCheck

data Set a = Nil | Node (Set a) a (Set a)

list :: Set a -> [a]
list Nil = []
list (Node l x r) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r) =
 invariant l && invariant r &&
 and [y < x | y <- list l] &&
 and [y > x | y <- list r]
empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = Node Nil x Nil
insert x (Node l y r)
 | x == y = Node l y r
 | x < y = Node (insert x l) y r
 | x > y = Node l y (insert x r)

set :: Ord a => [a] -> Set a
set = foldr insert empty
element :: Ord a => a -> Set a -> Bool
x `element` Nil = False
x `element` (Node l y r)
 | x == y = True
 | x < y = x `element` l
 | x > y = x `element` r

equal :: Ord a => Set a -> Set a -> Bool
s `equal` t = list s == list t
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x `element` s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

-- Prelude Tree> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
Part VI

Sets as *balanced* trees
module BalancedTree
 (Set (Nil, Node), empty, insert, set, element, equal) where

import Test.QuickCheck

type Depth = Int

data Set a = Nil | Node (Set a) a (Set a) Depth

node :: Set a -> a -> Set a -> Set a
node l x r = Node l x r (1 + (depth l 'max' depth r))

depth :: Set a -> Int
depth Nil = 0
depth (Node _ _ _ d) = d
list :: Set a -> [a]
list Nil = []
list (Node l x r _) = list l ++ [x] ++ list r

invariant :: Ord a => Set a -> Bool
invariant Nil = True
invariant (Node l x r d) =
 invariant l && invariant r &&
 and [y < x | y <- list l] &&
 and [y > x | y <- list r] &&
 abs (depth l - depth r) <= 1 &&
 d == 1 + (depth l `max` depth r)
BalancedTree.hs (3)

empty :: Set a
empty = Nil

insert :: Ord a => a -> Set a -> Set a
insert x Nil = node empty x empty
insert x (Node l y r _) |
 x == y = node l y r
 x < y = rebalance (node (insert x l) y r)
 x > y = rebalance (node l y (insert x r))

set :: Ord a => [a] -> Set a
set = foldr insert empty
Rebalancing

\[\text{Node (Node } a \times b) \ y \ c \quad \rightarrow \quad \text{Node } a \times (\text{Node } b \ y \ c) \]

\[\text{Node (Node } a \times (\text{Node } b \ y \ c) \ z \ d) \]
\[\quad \rightarrow \quad \text{Node (Node } a \times b) \ y \ (\text{Node } c \ z \ d) \]
rebalance :: Set a -> Set a
rebalance (Node (Node a x b _) y c _) |
 depth a >= depth b && depth a > depth c
 = node a x (node b y c)
rebalance (Node a x (Node b y c _) _) |
 depth c >= depth b && depth c > depth a
 = node (node a x b) y c
rebalance (Node (Node a x (Node b y c _) _) z d _) |
 depth (node b y c) > depth d
 = node (node a x b) y (node c z d)
rebalance (Node a x (Node (Node b y c _) z d _) _) |
 depth (node b y c) > depth a
 = node (node a x b) y (node c z d)
rebalance a = a
BalancedTree.hs (5)

element :: Ord a => a -> Set a -> Bool
x `element` Nil = False
x `element` (Node l y r _) |
x == y = True |
x < y = x `element` l |
x > y = x `element` r

equal :: Ord a => Set a -> Set a -> Bool
s `equal` t = list s == list t
prop_invariant :: [Int] -> Bool
prop_invariant xs = invariant s
 where
 s = set xs

prop_element :: [Int] -> Bool
prop_element ys =
 and [x 'element' s == odd x | x <- ys]
 where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_invariant >>
 quickCheck prop_element

-- Prelude BalancedTree> check
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
module BalancedTreeTest where

import BalancedTree

test :: Int -> Bool
test n =
 s `equal` t
 where
 s = set [1,2..n]
 t = set [n,n-1..1]

badtest :: Bool
badtest =
 s `equal` t
 where
 s = set [1,2,3]
 t = (Node Nil 1 (Node Nil 2 (Node Nil 3 Nil 1) 2) 3)
 -- breaks the invariant!
Part VII

Complexity, revisited
Summary

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>set</th>
<th>element</th>
<th>equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>OrderedList</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Tree</td>
<td>$O(\log n)^*$</td>
<td>$O(n \log n)^*$</td>
<td>$O(\log n)^*$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>$O(n)^\dagger$</td>
<td>$O(n^2)^\dagger$</td>
<td>$O(n)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>BalancedTree</td>
<td>$O(\log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

* average case / † worst case
Part VIII

Data Abstraction
module ListAbs
 (Set, empty, insert, set, element, equal) where
import Test.QuickCheck

data Set a = MkSet [a]

empty :: Set a
empty = MkSet []

insert :: a -> Set a -> Set a
insert x (MkSet xs) = MkSet (x:xs)

set :: [a] -> Set a
set xs = MkSet xs
element :: Eq a => a -> Set a -> Bool
x `element` (MkSet xs) = x `elem` xs

equal :: Eq a => Set a -> Set a -> Bool
MkSet xs `equal` MkSet ys =
 xs `subset` ys && ys `subset` xs
 where
 xs `subset` ys = and [x `elem` ys | x <- xs]
prop_element :: [Int] -> Bool
prop_element ys =
 and [x `element` s == odd x | x <- ys]
where
 s = set [x | x <- ys, odd x]

check =
 quickCheck prop_element

-- Prelude ListAbs> check
-- +++ OK, passed 100 tests.
module ListAbsTest where
import ListAbs

test :: Int -> Bool
test n =
 s 'equal' t
where
 s = set [1,2..n]
 t = set [n,n-1..1]

-- Following no longer type checks!
-- breakAbstraction :: Set a -> a
-- breakAbstraction = head
Hiding—the secret of abstraction

```
module ListAbs(Set, empty, insert, set, element, equal)

> ghci ListAbs.hs
Ok, modules loaded: SetList, MainList.
> let s0 = set [2,7,1,8,2,8]
> let MkSet xs = s0 in xs
Not in scope: data constructor 'MkSet'

VS.

module ListUnhidden(Set (MkSet), empty, insert, element, equal)

> ghci ListUnhidden.hs
> let s0 = set [2,7,1,8,2,8]
> let MkSet xs = s0 in xs
[2,7,1,8,2,8]
> head xs
2
```
Hiding—the secret of abstraction

module TreeAbs(Set, empty, insert, set, element, equal)

> ghci TreeAbs.hs
Ok, modules loaded: SetList, MainList.
> let s0 = Node (Node Nil 3 Nil) 2 (Node Nil 1 Nil)
Not in scope: data constructor ‘Node’, ‘Nil’

VS.

module TreeUnabs(Set(Node, Nil), empty, insert, element, equal)

> ghci TreeUnabs.hs
> let s0 = Node (Node Nil 3 Nil) 2 (Node Nil 1 Nil)
> invariant s0
False
Preserving the invariant

module TreeAbsInvariantTest where
import TreeAbs

prop_invariant_empty = invariant empty

prop_invariant_insert x s =
 invariant s ==> invariant (insert x s)

prop_invariant_set xs = invariant (set xs)

check =
 quickCheck prop_invariant_empty >>
 quickCheck prop_invariant_insert >>
 quickCheck prop_invariant_set

-- Prelude TreeAbsInvariantTest> check
-- +++ OK, passed 1 tests.
-- +++ OK, passed 100 tests.
-- +++ OK, passed 100 tests.
It’s mine!