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Part I

The importance of being lazy



Searching for the first odd number

ho :: Int -> [Int]
ho n = (take 1 . filter odd) [0..n]

comp :: Int -> [Int]
comp n = take 1 [ x | x <- [0..n], odd x ]

rec :: Int -> [Int]
rec n = helper 0

where
helper :: Int -> [Int]
helper i | i > n = []

| odd i = [i]
| otherwise = helper (i+1)



Quickcheck

prop_odd :: Int -> Bool
prop_odd n = a == b && b == c

where
a = ho n
b = comp n
c = rec n

[1 of 1] Compiling Main
Ok, one module loaded.
> quickCheck prop_odd
+++ OK, passed 100 tests.



Timing

> :set +s
> ho 1000000
[1]
(0.00 secs, 64,776 bytes)
> comp 1000000
[1]
(0.00 secs, 64,984 bytes)
> rec 1000000
[1]
(0.00 secs, 65,168 bytes)



How it works: rec

rec :: Int -> [Int]
rec n = helper 0

where
helper :: Int -> [Int]
helper i | i > n = []

| odd i = [i]
| otherwise = helper (i+1)

rec 1000000
=

helper 0
=

helper 1
=

[1]



How it works: ho

ho :: Int -> [Int]
ho n = (take 1 . filter odd) [0..n]

ho 1000000
=

(take 1 . filter odd) [0..1000000]
=

take 1 (filter odd [0..1000000] )
=

take 1 (filter odd (0 : [1..1000000] ))
=

take 1 (filter odd (1 : [2..1000000] ))
=

take 1 (1 : filter odd [2..1000000] )
=

1 : take 0 (filter odd [2..1000000] )
=

1 : []



Part II

Sum of odd squares
three ways



Sum of odd squares

ho :: Int -> Int
ho n = (foldl (+) 0 . map (ˆ2) . filter odd) [0..n]

comp :: Int -> Int
comp n = sum [ xˆ2 | x <- [0..n], odd x ]

rec :: Int -> Int
rec n = helper 0 0

where
helper :: Int -> Int -> Int
helper i a | i > n = a

| odd i = helper (i+1) (a + iˆ2)
| otherwise = helper (i+1) a



Quickcheck

prop_sqr :: Int -> Bool
prop_sqr n = a == b && b == c

where
a = ho n
b = comp n
c = rec n

Ok, one module loaded.
> quickCheck prop_sqr
+++ OK, passed 100 tests.



Runtimes in ghci

> :set +s
> ho 1000000
166666666666500000
(0.43 secs, 596,687,792 bytes)
> comp 1000000
166666666666500000
(0.67 secs, 628,685,832 bytes)
> rec 1000000
166666666666500000
(1.02 secs, 692,881,968 bytes)



The Moral

Usually coding involves tradeoffs:
simple and slow

vs.
complex and fast.

The big win is when you can find a way to be
both simple and fast.



Part III

Sorting
three ways



Insertion sort

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = x ‘f‘ foldr f e xs

foldr f e [x,y,z] = (x ‘f‘ (y ‘f‘ (z ‘f‘ e)))

isort :: Ord a => [a] -> [a]
isort = foldr insert []

where
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y : ys) | x <= y = x : y : ys

| otherwise = y : insert x ys



Quicksort

qsort :: Ord a => Int -> [a] -> [a]
qsort k xs | length xs <= k = isort xs
qsort k (y:xs) =

qsort k [ x | x <- xs, x < y ]
++ [ y ] ++
qsort k [ x | x <- xs, x >= y ]



Merge sort

msort :: Ord a => Int -> [a] -> [a]
msort k xs | length xs <= k = isort xs

| otherwise = merge (msort k (take m xs))
(msort k (drop m xs))

where
m = length xs ‘div‘ 2
merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys



Why quicksort and mergesort are O(n log n)

n︷ ︸︸ ︷
n/2︷ ︸︸ ︷ n/2︷ ︸︸ ︷

n/4︷ ︸︸ ︷ n/4︷ ︸︸ ︷ n/4︷ ︸︸ ︷ n/4︷ ︸︸ ︷
...

k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ · · ·
k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷


log n

n number of elements to be sorted

k cutoff size



Part IV

A few graphs
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