Informatics 1
 Introduction to Computation

Lecture 14

Laziness, Higher-order, and Sorting

Don Sannella

University of Edinburgh

Part I

The importance of being lazy

Searching for the first odd number

```
ho :: Int -> [Int]
ho n = (take 1 . filter odd) [0..n]
comp :: Int -> [Int]
comp n = take 1 [ x | x <- [0..n], odd x ]
rec :: Int -> [Int]
rec n = helper 0
    where
    helper :: Int -> [Int]
    helper i | i > n = []
        | odd i = [i]
        | otherwise = helper (i+1)
```


Quickcheck

```
prop_odd : : Int -> Bool
prop_odd \(\mathrm{n}=\mathrm{a}==\mathrm{b} \& \& \mathrm{~b}==\mathrm{c}\)
    where
    a = ho n
    \(\mathrm{b}=\mathrm{comp} \mathrm{n}\)
    c \(=\) rec \(n\)
```

[1 of 1] Compiling Main
Ok, one module loaded.
> quickCheck prop_odd
+++ OK, passed 100 tests.

Timing

```
> :set +s
> ho 1000000
[1]
(0.00 secs, 64,776 bytes)
> comp 1000000
[1]
(0.00 secs, 64,984 bytes)
> rec 1000000
[1]
(0.00 secs, 65,168 bytes)
```


How it works: rec

```
rec :: Int -> [Int]
rec n = helper 0
    where
    helper :: Int -> [Int]
    helper i | i > n = []
            | odd i = [i]
            | otherwise = helper (i+1)
    rec 1000000
=
    helper 0
=
    helper 1
=
    [1]
```


How it works: ho

```
ho :: Int -> [Int]
ho n = (take 1 . filter odd) [0..n]
ho 1000000
=
    (take 1. filter odd) [0..1000000]
=
    take 1 (filter odd [0..1000000])
=
    take 1 (filter odd (0: [1..1000000]))
=
    take 1 (filter odd (1 : [2..1000000]))
=
    take 1 (1 : filter odd [2..1000000])
=
    1 : take 0 (filter odd [2..1000000]
=
    1 : []
```


Part II

Sum of odd squares
 three ways

Sum of odd squares

```
ho :: Int -> Int
ho n = (foldl (+) 0 . map (^2) . filter odd) [0..n]
comp :: Int -> Int
comp n = sum [ x^2 | x <- [0..n], odd x ]
rec :: Int -> Int
rec n = helper 0 0
    where
    helper :: Int -> Int -> Int
    helper i a | i > n =a
    | odd i = helper (i+1) (a + i^2)
    | otherwise = helper (i+1) a
```


Quickcheck

```
prop_sqr : : Int \(->\) Bool
prop_sqr \(\mathrm{n}=\mathrm{a}==\mathrm{b} \& \& \mathrm{~b}==\mathrm{c}\)
    where
    a = ho n
    \(\mathrm{b}=\mathrm{comp} \mathrm{n}\)
    c \(=\) rec \(n\)
```

Ok, one module loaded.
> quickCheck prop_sqr
+++ OK, passed 100 tests.

Runtimes in ghci

```
> :set +s
> ho 1000000
166666666666500000
(0.43 secs, 596,687,792 bytes)
> comp 1000000
166666666666500000
(0.67 secs, 628,685,832 bytes)
> rec 1000000
166666666666500000
(1.02 secs, 692,881,968 bytes)
```


The Moral

Usually coding involves tradeoffs:
simple and slow
vs.
complex and fast.

The big win is when you can find a way to be both simple and fast.

Part III

Sorting

three ways

Insertion sort

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xS) = x 'f' foldr f e xS
    foldr f e [x,Y,z]=(x 'f'(y 'f'(z 'f`e)))
isort :: Ord a => [a] -> [a]
isort = foldr insert []
    where
    insert :: Ord a => a -> [a] -> [a]
    insert x [] = [x]
    insert x (y : ys) | x <= y = x : y : ys
        | otherwise = y : insert x ys
```

Quicksort

```
qsort :: Ord a => Int -> [a] -> [a]
qsort k xs | length xs <= k = isort xs
qsort k (y:xs) =
qsort k [ x | x <- xs, x < y ]
++ [ Y ] ++
qsort k [ x | x <- xs, x > = Y ]
```


Merge sort

```
msort :: Ord a => Int -> [a] -> [a]
msort k xs | length xs <= k = isort xs
    | otherwise = merge (msort k (take m xs))
    (msort k (drop m xs))
```

where
$\mathrm{m}=$ length xs 'div' 2
merge :: Ord $a=>$ [a] $->$ [a] $->$ [a]
merge xs [] $=\mathrm{xs}$
merge [] ys $=$ ys
merge (x:xs) (y:ys) | $x<=y=x$ merge $x s$ (y:ys)
| otherwise $=y$: merge (x:xs) ys

Why quicksort and mergesort are $O(n \log n)$

n number of elements to be sorted
$k \quad$ cutoff size

Part IV

A few graphs

