
Informatics 1
Introduction to Computation

Lecture 14

Laziness, Higher-order, and Sorting

Don Sannella
University of Edinburgh

Part I

The importance of being lazy

Searching for the first odd number

ho :: Int -> [Int]
ho n = (take 1 . filter odd) [0..n]

comp :: Int -> [Int]
comp n = take 1 [x | x <- [0..n], odd x]

rec :: Int -> [Int]
rec n = helper 0

where
helper :: Int -> [Int]
helper i | i > n = []

| odd i = [i]
| otherwise = helper (i+1)

Quickcheck

prop_odd :: Int -> Bool
prop_odd n = a == b && b == c

where
a = ho n
b = comp n
c = rec n

[1 of 1] Compiling Main
Ok, one module loaded.
> quickCheck prop_odd
+++ OK, passed 100 tests.

Timing

> :set +s
> ho 1000000
[1]
(0.00 secs, 64,776 bytes)
> comp 1000000
[1]
(0.00 secs, 64,984 bytes)
> rec 1000000
[1]
(0.00 secs, 65,168 bytes)

How it works: rec

rec :: Int -> [Int]
rec n = helper 0

where
helper :: Int -> [Int]
helper i | i > n = []

| odd i = [i]
| otherwise = helper (i+1)

rec 1000000
=

helper 0
=

helper 1
=

[1]

How it works: ho

ho :: Int -> [Int]
ho n = (take 1 . filter odd) [0..n]

ho 1000000
=

(take 1 . filter odd) [0..1000000]
=

take 1 (filter odd [0..1000000])
=

take 1 (filter odd (0 : [1..1000000]))
=

take 1 (filter odd (1 : [2..1000000]))
=

take 1 (1 : filter odd [2..1000000])
=

1 : take 0 (filter odd [2..1000000])
=

1 : []

Part II

Sum of odd squares
three ways

Sum of odd squares

ho :: Int -> Int
ho n = (foldl (+) 0 . map (ˆ2) . filter odd) [0..n]

comp :: Int -> Int
comp n = sum [xˆ2 | x <- [0..n], odd x]

rec :: Int -> Int
rec n = helper 0 0

where
helper :: Int -> Int -> Int
helper i a | i > n = a

| odd i = helper (i+1) (a + iˆ2)
| otherwise = helper (i+1) a

Quickcheck

prop_sqr :: Int -> Bool
prop_sqr n = a == b && b == c

where
a = ho n
b = comp n
c = rec n

Ok, one module loaded.
> quickCheck prop_sqr
+++ OK, passed 100 tests.

Runtimes in ghci

> :set +s
> ho 1000000
166666666666500000
(0.43 secs, 596,687,792 bytes)
> comp 1000000
166666666666500000
(0.67 secs, 628,685,832 bytes)
> rec 1000000
166666666666500000
(1.02 secs, 692,881,968 bytes)

The Moral

Usually coding involves tradeoffs:
simple and slow

vs.
complex and fast.

The big win is when you can find a way to be
both simple and fast.

Part III

Sorting
three ways

Insertion sort

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x:xs) = x ‘f‘ foldr f e xs

foldr f e [x,y,z] = (x ‘f‘ (y ‘f‘ (z ‘f‘ e)))

isort :: Ord a => [a] -> [a]
isort = foldr insert []

where
insert :: Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x (y : ys) | x <= y = x : y : ys

| otherwise = y : insert x ys

Quicksort

qsort :: Ord a => Int -> [a] -> [a]
qsort k xs | length xs <= k = isort xs
qsort k (y:xs) =

qsort k [x | x <- xs, x < y]
++ [y] ++
qsort k [x | x <- xs, x >= y]

Merge sort

msort :: Ord a => Int -> [a] -> [a]
msort k xs | length xs <= k = isort xs

| otherwise = merge (msort k (take m xs))
(msort k (drop m xs))

where
m = length xs ‘div‘ 2
merge :: Ord a => [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys) | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

Why quicksort and mergesort are O(n log n)

n︷ ︸︸ ︷
n/2︷ ︸︸ ︷ n/2︷ ︸︸ ︷

n/4︷ ︸︸ ︷ n/4︷ ︸︸ ︷ n/4︷ ︸︸ ︷ n/4︷ ︸︸ ︷
...

k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ · · ·
k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷ k︷︸︸︷

log n

n number of elements to be sorted

k cutoff size

Part IV

A few graphs

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time	in	seconds	 vs	size	of	list	(random	list)

Quicksort Merge	sort

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time	in	seconds	 vs	size	of	list	(random	list)

Quicksort Merge	sort Insertion	sort

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time	is	seconds	 vs	size	of	list	(sorted	list)

Quicksort Merge	sort Insertion	sort

0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

0 10 20 30 40 50 60 70 80 90 100

Time	in	seconds	 vs	Cutoff	Size	(random	list	of	length	1024)

Quicksort Merge	Sort

