
Informatics 2 – Introduction to

Algorithms and Data Structures

Tutorial 1: Asymptotic Notation

This tutorial is designed to help you become fluent in asymptotic notation,
which was introduced in Lectures 3 and 4, and which will be used throughout
the rest of the course. The emphasis this week is on the basic mathematical
machinery, touching only lightly on algorithms in the last question. We’ll see
a lot more applications to algorithms in next week’s tutorial and later in the
course.

Please work through as much of the sheet as you can in advance of the tuto-
rial, and come prepared to ask questions on any points where you encounter
difficulties.

Questions marked ⋆ may be more challenging than the others.

1. First, some practice in working intuitively with growth rates. Here you
should try to give informal justifications for your answers, though you are
not required to present them with full mathematical rigour.

Recall from the lectures the following set of functions representing some
commonly arising growth rates. Here lg n means the logarithm of n to
base 2.

f0(n) = 1 f1(n) = lg n f2(n) =
√
n

f3(n) = n f4(n) = n lg n f5(n) = n2

f6(n) = n3 f7(n) = 2n f8(n) = 22
n

For each of the following five functions g, identify a function fi from the
above list such that g = Θ(fi). Justify your answers as clearly as you can.

(a) g(n) = n(n+ 1)(2n+ 1)/6.

(b) g(n) = n div 57 (integer division, rounding down)

(c) g(n) = n mod 57 + 1

(d) g(n) = n lg n+(lg n)3+e−n. You may assume here that lg n = o(
√
n).

(e) ⋆ Where would the factorial function fit into this picture? Does n!
have the same growth rate as one of the above functions fi? Or does
it fall between fi and fi+1 for some i?

2. The next stage is to learn to argue with full rigour from the definitions of
o(·), O(·), etc. This may take a while to master, but see how you get on
with the following examples at this stage.

1



Recall from the lecture slides that ‘f ∈ o(g)’ (also written as ‘f = o(g)’)
means that

for all c > 0, there exists N such that for all n ≥ N we have f(n) < cg(n),

and ‘f ∈ O(g)’ (or ‘f = O(g)’) means that

there exist C > 0 and N such that for all n ≥ N we have f(n) ≤ Cg(n).

(a) Show directly from the definition that 100n3 = o(n4).

(b) Show that if r, s are any real numbers with 0 ≤ r < s, then nr =
o(ns).

(c) Writing ‘lg’ for log to base 2 and ‘ln’ for log to base e, show that
lnn = O(lg n). Deduce that lg n = Θ(lnn). (This is an important
fact: it says that it makes no mathematical difference whether we
write e.g. O(n lg n) or O(n lnn).)

(d) Is it likewise true that 2n = Θ(en)? Justify your answer.

Note: In this course, we’ll allow you to assume the following mathematical
facts without proof:

� Polynomial functions grow more slowly than exponential ones: for
any k and any r > 1, we have nk = o(rn).

� Logs grow more slowly than square roots, cube roots etc.: for any
k ≥ 1 we have lg n = o(n1/k).

3. Recall the methods you learned at school for addition, long multiplication
and long division. For each of these, informally analyse the asymptotic
worst-case runtime when both inputs have at most n decimal digits. (E.g.
is it Θ(n), or Θ(n lg n), or something else?) You may take ‘time’ to mean
the number of times you have to write a symbol on the page.

[Note: This is a more ‘fine-grained’ level of analysis than we’ll usually be
concerned with in this course. For many purposes, we’ll consider additions
and multiplications as ‘atomic’ operations taking just a single step.]

2


