
Introduction to Algorithms and Data Structures

Lecture 2: Inefficient vs. efficient algorithms

John Longley

School of Informatics
University of Edinburgh

21 September 2023

IADS Lecture 2 Slide 1

Inefficient vs. efficient algorithms

Goal of lecture: Introduce some examples of algorithms, illustrating
the difference between ‘efficient’ and ‘inefficient’ solutions to a
problem.

Problem 1 (toy example): Given a large decimal whole number n,
compute n mod 9 (i.e. the remainder on dividing n by 9).

Method A: Do division by school method; note the remainder.

4 1 6 4 7 3 5 2 5 3 7 7 2 8 9

9) 3 71458426631472248336965268087 rem 6

This is the ‘obvious’ method: no cleverness involved.

IADS Lecture 2 Slide 2

Alternative method

Method B: Add the digits of n to get a new number n′.
Do the same to n′; repeat till we get down to a single digit d ,
If d = 9, answer is 0; otherwise answer is d .

E.g. for n = 3748261728395607:

3+7+4+8+2+6+1+7+2+8+3+9+5+6+0+7 = 78
7 + 8 = 15
1 + 5 = 6

Why does this work?

E.g. for a 4-digit number written abcd :

1000a+ 100b + 10c + d = (999a+ a) + (99b + b) + (9c + c) + d

≡ a+ b + c + d (mod 9)

IADS Lecture 2 Slide 3

Comparing methods A and B

Advantages of method B:

▶ Faster, at least for humans (though not spectacularly so).

▶ More flexible: can add digits in whatever order you like.

▶ Can be parallelized (you add first 8 digits, I’ll add last 8).

Moral: Using mathematical insight, improvements over the ‘obvious’
algorithm may be possible.

Improved algorithm may be ‘non-obvious’ and may need justifying.

IADS Lecture 2 Slide 4

Modular exponentiation

Problem 2: Given (large) whole numbers a, n,m, compute an

mod m. E.g. 210 mod 17 = 1024 mod 17 = 4.

Believe it or not, this problem is absolutely fundamental to modern
cryptosystems (e.g. RSA, as explained in DMP course).

Method A: Literally compute an, then reduce modulo m.

▶ If e.g. a = 3, n = 123456789012345678901234,
then an won’t even fit in memory.

▶ In any case, working with very big numbers is time-consuming.

IADS Lecture 2 Slide 5

Modular exponentiation, continued

Method B: Start from a.
Do (n − 1) multiplications by a, but reduce mod m each time.
Works because:

(x × y) mod m = ((x mod m)× (y mod m)) mod m

E.g. for 210 mod 17:

2× 2 = 4, 4× 2 = 8, 8× 2 = 16, 16× 2 = 32 ≡ 15, 15× 2 = 30 ≡ 13,
13× 2 = 26 ≡ 9, 9× 2 = 18 ≡ 1, 1× 2 = 2, 2× 2 = 4.

▶ Now numbers never get bigger than am.

▶ But still impractical if n = 123456789012345678901234.

IADS Lecture 2 Slide 6

Fast modular exponentiation

Method C: Notice that it’s easy to compute e = an mod m if
we’ve already computed d = a⌊n/2⌋ mod m:

▶ If n is even, take e = (d × d) mod m.

▶ If n is odd, take e = (d × d × a) mod m.

This suggests the following recursive algorithm:

Expmod (a,n,m): # Computes an mod m
if n=0 then return 1
else

d = Expmod (a,⌊n/2⌋,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

(Example of pseudocode: informal mix of programming constructs, math

notation, and English. Useful for expressing algorithms in a readable way.)

IADS Lecture 2 Slide 7

Example of Method C
Expmod (a,n,m):

if n=0 then return 1
else

d = Expmod (a,⌊n/2⌋,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

Imagine each evaluation of Expmod is done by a different ‘person’:

Us to A: What’s Expmod (2,10,17) ?
A to B: What’s Expmod (2,5,17) ?
B to C: What’s Expmod (2,2,17) ?
C to D: What’s Expmod (2,1,17) ?
D to E: What’s Expmod (2,0,17)?
E to D: 1
D to C: 1× 1× 2 mod 17 = 2
C to B: 2× 2 mod 17 = 4
B to A: 4× 4× 2 mod 17 = 15
A to us: 15× 15 mod 17 = 4.

This is feasible even when a, n,m are large (say ∼ 1000 digits).

IADS Lecture 2 Slide 8

Some Python experiments

Time in milliseconds to compute 3n mod 2n (on my laptop):

n Method A Method B Method C min(A,B)/C

10 .0027 .0051 .0055 0.49
100 .0041 .0134 .0071 0.58

1000 .0092 .1229 .0076 1.21
10000 .133 2.41 .010 13.3

100000 2.81 10.46 .016 176.
1000000 101. 127. .017 5941.

10000000 3986. 1168. .017 68700.
100000000 149000 11150 .019 587000.

1000000000 crashed 213000 .022 9680000.
10100 — — .656 —

Key idea: It’s not just that my Python program for C is the best.
Rather, the algorithm itself is vastly, fundamentally superior.
How do we make this idea precise?

IADS Lecture 2 Slide 9

Digression: Primality testing
Fermat’s little theorem: If n is prime and 0 < a < n, then an−1

mod n = 1. [Proved in DMP.]

Application: Let n be the following 270-digit number.

412023436986659543855531365332575948179811699844327982845455
626433876445565248426198098870423161841879261420247188869492
560931776375033421130982397485150944909106910269861031862704
114880866970564902903653658867433731720813104105190864254793
282601391257624033946373269391

My Python ‘Program C’ takes <5 ms to discover that
2n−1 mod n = · · · ̸= 1. Conclusion: n is not prime.

So what are its factors? If you knew, you’d be (slightly) famous.
This is RSA-896, not yet cracked. ($75,000 prize sadly withdrawn!)

Note: This isn’t a perfect primality test: a few non-primes (e.g. 561)

masquerade as primes. But for big numbers, error probability is very small

— and by refining the test, can be made even smaller (Miller-Rabin test).

IADS Lecture 2 Slide 10

InsertSort

Problem 3: Given an array A containing n whole numbers, construct
an array B containing the same n numbers in non-decreasing order.

Method A (‘obvious’): Go through elements of A one by one.
Copy them into B, filling B from left to right, and inserting each
element in its correct position.

IADS Lecture 2 Slide 11

InsertSort: in-place version
Actually, don’t need a separate array B: can do everything within
A itself (in-place sorting). Just need to be able to hold one number
‘in our hand’ at any given time.

In pseudocode:

InsertSort(A):
for i = 1 to |A|−1 # |A| means size of A

x = A[i]
j = i−1
while j ≥ 0 and A[j] > x

A[j+1] = A[j]
j = j−1

A[j+1] = x
IADS Lecture 2 Slide 12

MergeSort
Method B (less obvious). Split A into two halves.
Sort these separately, then merge the results.

Merge (B,C):
allocate D of size |B| + |C|
i = j = 0
for k = 0 to |D|−1

if B[i] < C[j] # Convention: ∞ if index out of range
D[k] = B[i], i = i+1

else
D[k] = C[j], j = j+1

return D
IADS Lecture 2 Slide 13

MergeSort: Recursive application of Merge

IADS Lecture 2 Slide 14

MergeSort continued

A recursive sorting algorithm:

MergeSort (A,m,n): # sorts A[m], A[m+1], . . . , A[n−1]
returning result in an array D of size n−m

if n−m = 1
return [A(m)]

else
p = ⌊(m+n)/2⌋
B = MergeSort (A,m,p)
C = MergeSort (A,p,n)
D = Merge (B,C)
return D

MergeSortAll (A):
return MergeSort (A,0,|A|)

IADS Lecture 2 Slide 15

Python again

Time in milliseconds to sort a list of length n.
(Entries were random whole numbers < n2.)

n InsertSort MergeSort Speedup

10 .023 .068 0.34
100 .97 .74 1.31

1000 69.8 7.9 8.84
10000 8210. 76.2 107.

100000 906000. 1080. 839.
1000000 – 13300.

10000000 – 158000.
100000000 – 2619000.

So MergeSort seems fundamentally superior (as regards runtime).
Again, how can we make this precise?
And why is MergeSort so much better? What’s going on here?
Will explore this next time.

IADS Lecture 2 Slide 16

Reading

▶ InsertSort: CLRS 2.1

▶ MergeSort: Roughgarden 1.4,1.5; CLRS 2.3

▶ Modular exponentiation: CLRS 31.6, second half

▶ [RSA challenge numbers: good Wikipedia pages.]

IADS Lecture 2 Slide 17

