
Introduction to Algorithms and Data Structures

Lecture 3: Asymptotics: o and ω

John Longley

School of Informatics
University of Edinburgh

26 September 2023

IADS Lecture 3 Slide 1



Outline

Goal of Lectures 3,4,5:

▶ Introduce asymptotic analysis, the core mathematical theory
used in this course. Centres around a certain ‘Gang of Five’:

o O Θ Ω ω

▶ Apply this theory to InsertSort and MergeSort.

Purpose of the theory: Way of making precise, quantitative
statements about efficiency properties of algorithms themselves.
(E.g. What do all implementations of MergeSort have in common?)

Note: These ideas may take a while to master – don’t worry!

This lecture: In what sense is MergeSort ‘fundamentally faster’ than
InsertSort? o and ω.

IADS Lecture 3 Slide 2



Comparing runtimes for InsertSort and MergeSort
Take some specific implementations of InsertSort and MergeSort.

Broadly, we want to consider . . .

TI (n) = time taken by InsertSort on a list of length n (in ms)

TM(n) = time taken by MergeSort on a list of length n

Which list of length n? Time may vary widely between lists!

Will come back to this. For now, take TI (n), TM(n) to be the
worst-case (i.e. maximum) times for a list of length n.

Could then plot a graph (schematic only):

IADS Lecture 3 Slide 3



Comparing TI and TM

How can we capture our intuition ‘TI grows much faster than TM ’?

Attempt 1: ∀n.TM(n) < TI (n).
Not true! We’ve seen that for small n, InsertSort is faster. Really
want to say that MergeSort is eventually faster.

Attempt 2: ∃N.∀n ≥ N.TM(n) < TI (n).
True. E.g. N = 100 would do here.
But doesn’t capture the essential difference . . .

IADS Lecture 3 Slide 4



Comparing growth rates

Attempt 3: Idea is that we expect that any impl of MergeSort
will eventually beat any impl of InsertSort.

E.g. suppose we gave InsertSort an unfair advantage by running it
on a machine 100 times faster.
Even TI (n)/100 would eventually overtake TM(n):

In symbols: ∃N.∀n ≥ N.TM(n) < 0.01TI (n).
(E.g. N = 100000 would do here.)

Question: What if we replaced 0.01 by 0.0001? Or by 0.000001?

IADS Lecture 3 Slide 5



Growth rates and ‘little o’

Intuition (will justify later): For any handicap factor c , however
close to zero, cTI (n) will eventually break out and overtake TM :

∀c > 0. ∃N. ∀n ≥ N.TM(n) < cTI (n)

We express this by saying TM is o(TI ). Can read this as:
‘TM is slower-growing than’ or ‘asymptotically smaller than TI ’.

In general, we say f is o(g) if

∀c > 0. ∃N. ∀n ≥ N. f (n) < cg(n)

(Here f , g : N → R≥0, c ranges over R, and N, n range over N.)

Equivalent to saying g(n)/f (n) → ∞ as n → ∞ (if f : N → R>0).

IADS Lecture 3 Slide 6



o-notation: Simple examples

Will come back to InsertSort and MergeSort later.
Meanwhile, some simpler examples of o.

Example 1: Is it true that n2 is o(n3)? YES!

Informal justification: The ratio n3/n2 is n, which (trivially!) tends
to ∞ as n tends to ∞.

Rigorous justification: Want to show that the o formula is satisfied:

∀c > 0. ∃N. ∀n ≥ N. n2 < cn3

Suppose we’re given some c > 0. Need to pick a suitable N.

Take any N > 1/c . Then for all n ≥ N, we have

cn3 = cn.n2 ≥ cN.n2 > c(1/c)n2 = n2

(Idea: If n > 1/c , the extra factor n will compensate for the c.)

IADS Lecture 3 Slide 7



Examples of o-notation, continued

Example 2: Is it true that 100
√
n is o(n)? YES!

Informal justification: The ratio n/(100
√
n) is

√
n/100, which tends

to ∞ as n tends to ∞.

Rigorous justification: Want to show that the o formula is satisfied:

∀c > 0. ∃N. ∀n ≥ N. 100
√
n < cn

Suppose we’re given some c > 0. Need to pick a suitable N.

Take any N > 10000/c2. Then for all n ≥ N, we have

cn = c
√
n
√
n ≥ c

√
N
√
n > c(100/c)

√
n = 100

√
n

How did we pick that 10000/c2?

E.g. by working backwards from the requirement n/(100
√
n) > 1/c .

IADS Lecture 3 Slide 8



Examples of o-notation, continued
Example 3: Is it true that n + 1000000 is o(6n)? NO!

Informal justification: Even though the ratio 6n/(n + 1000000)
continues to increase as n tends to ∞, it never exceeds 6, so
doesn’t tend to ∞.

Rigorous justification: Want to show the negation of the o formula:

¬ (∀c > 0. ∃N. ∀n ≥ N. n + 1000000 < c.6n)

which is equivalent to

∃c > 0. ∀N. ∃n ≥ N. n + 1000000 ≥ c .6n

We can take c = 1/7. It’s then true for any n ≥ 0 that

n + 1000000 > n ≥ 6n/7 = c .6n

So it’s clear that ∀N.∃n ≥ N. n + 1000000 ≥ c.6n (given N, can
just take n = N).

IADS Lecture 3 Slide 9



What is ‘o(g)’ officially?
Officially, o(g) is a set: namely, the set of all f that ‘are o(g)’.

o(g) = {f : N → R≥0 | ∀c > 0. ∃N. ∀n ≥ N. f (n) < cg(n)}

So, ‘f is o(g)’ technically means f ∈ o(g).

Common convention: Write ‘o(g)’ to mean ‘some (unspecified)
function in the set o(g)’. E.g.

f = o(g) , f (n) = 3n2 + o(n)

Needs care: e.g. n = o(n2) and 2n = o(n2) don’t imply n = 2n !

But many useful laws are valid, e.g.

o(g) + o(g) = o(g)

which strictly means ‘if f ∈ o(g) and f ′ ∈ o(g), then f +f ′ ∈ o(g)’.

(Exercise if you like maths: Prove this from the definition of o.)

IADS Lecture 3 Slide 10



Reducing clutter using o
Asymptotic notation is useful when we’re only interested in the
broad headlines of how some function behaves.

E.g. Can read 3n2 + o(n) as ‘3n2 plus small change.’

Reduces clutter and simplifies calculations!

Example: How does the following behave for large n?

(3n + 5
√
n + 17 lg n) (4n + (

√
n / lg n) + 12)

(In this course, lg means logarithm to base 2.)

Rather than expanding this in full, can reason as follows:

(3n + o(n) + o(n))(4n + o(n) + o(n)) = (3n + o(n))(4n + o(n))

= 12n2 + o(3n2) + o(4n2) + o(n2)

= 12n2 + o(n2)

(where every step can be rigorously justified).

IADS Lecture 3 Slide 11



Some key points

▶ Saying f = o(g) gives just the main headlines of how f and g
are related: ‘In the limit, f is vanishingly small relative to g ’.
Often, this is all we care about.

▶ f = o(g) makes a robust statement about f , g .
E.g. unaffected by scaling: f = o(g) ⇔ 3f = o(0.2g).

▶ So can expect that e.g. ‘TM = o(TI )’ will remain true for any
implementations of MergeSort/InsertSort.

▶ Use of o can reduce clutter and simplify calculations.

▶ But without sacrificing mathematical rigour: ‘f = o(g)’ has a
precisely defined meaning.

General advice: Sketch graphs to understand what’s going on!

IADS Lecture 3 Slide 12



And finally: ω
ω is dual to o. Recall that f = o(g) means:

∀c > 0. ∃N. ∀n ≥ N. f (n) < cg(n)

(‘f is asymptotically smaller than / grows slower than g ’).

By contrast, read f = ω(g) as saying:
‘f is asymptotically larger than / grows faster than g ’).

Formal definition: f is ω(g) if

∀C > 0. ∃N. ∀n ≥ N. f (n) > Cg(n)

(‘However much we scale g up by, f will eventually overtake it.’)

For purpose of comparing f and g , scaling g ‘up’ by C has same
effect as scaling f ‘down’ by c = 1/C . So easy to show:

f = ω(g) if and only if g = o(f )

(Compare: x > y if and only if y < x .)

We’ll tend to use o more than ω.
IADS Lecture 3 Slide 13



Next time: O, Ω, Θ.
(Most presentations start with these!)

Reading for Lectures 3 and 4:
Roughgarden Chapter 2
Kleinberg/Tardos Chapter 2, especially 2.2, 2.4
CLRS Chapter 3 (covers whole Gang of Five)
GGT Sections 3.3, 3.4.

IADS Lecture 3 Slide 14


