Introduction to Algorithms and Data Structures

 Lecture 3: Asymptotics: o and ωJohn Longley

School of Informatics
University of Edinburgh
26 September 2023

IADS Lecture 3 Slide 1

Outline

Goal of Lectures 3,4,5:

- Introduce asymptotic analysis, the core mathematical theory used in this course. Centres around a certain 'Gang of Five':

$$
0 \quad 0 \quad \Theta \quad \Omega \quad \omega
$$

- Apply this theory to InsertSort and MergeSort.

Purpose of the theory: Way of making precise, quantitative statements about efficiency properties of algorithms themselves. (E.g. What do all implementations of MergeSort have in common?)

Note: These ideas may take a while to master - don't worry!
This lecture: In what sense is MergeSort 'fundamentally faster' than InsertSort? o and ω.

Comparing runtimes for InsertSort and MergeSort

Take some specific implementations of InsertSort and MergeSort.
Broadly, we want to consider ...
$T_{l}(n)=$ time taken by InsertSort on a list of length n (in ms)
$T_{M}(n)=$ time taken by MergeSort on a list of length n
Which list of length n ? Time may vary widely between lists!
Will come back to this. For now, take $T_{l}(n), T_{M}(n)$ to be the worst-case (i.e. maximum) times for a list of length n.
Could then plot a graph (schematic only):

IADS Lecture 3 Slide 3

Comparing T_{I} and T_{M}

How can we capture our intuition ' T_{l} grows much faster than T_{M} '?
Attempt 1: $\forall n . T_{M}(n)<T_{l}(n)$.
Not true! We've seen that for small n, InsertSort is faster. Really want to say that MergeSort is eventually faster.

Attempt 2: $\exists N . \forall n \geq N . T_{M}(n)<T_{l}(n)$.
True. E.g. $N=100$ would do here.
But doesn't capture the essential difference ...

Comparing growth rates

Attempt 3: Idea is that we expect that any impl of MergeSort will eventually beat any impl of InsertSort.
E.g. suppose we gave InsertSort an unfair advantage by running it on a machine 100 times faster.
Even $T_{l}(n) / 100$ would eventually overtake $T_{M}(n)$:

In symbols: $\exists N . \forall n \geq N . T_{M}(n)<0.01 T_{l}(n)$.
(E.g. $N=100000$ would do here.)

Question: What if we replaced 0.01 by 0.0001 ? Or by 0.000001 ?

Growth rates and 'little o'

Intuition (will justify later): For any handicap factor c, however close to zero, $c T_{l}(n)$ will eventually break out and overtake T_{M} :

$$
\forall c>0 . \exists N . \forall n \geq N . T_{M}(n)<c T_{l}(n)
$$

We express this by saying T_{M} is $o\left(T_{I}\right)$. Can read this as:
' T_{M} is slower-growing than' or 'asymptotically smaller than T_{l} '.
In general, we say f is $o(g)$ if

$$
\forall c>0 . \exists N . \forall n \geq N . f(n)<c g(n)
$$

(Here $f, g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}, c$ ranges over \mathbb{R}, and N, n range over \mathbb{N}.)
Equivalent to saying $g(n) / f(n) \rightarrow \infty$ as $n \rightarrow \infty$ (if $f: \mathbb{N} \rightarrow \mathbb{R}_{>0}$).

o-notation: Simple examples

Will come back to InsertSort and MergeSort later.
Meanwhile, some simpler examples of o.
Example 1: Is it true that n^{2} is $o\left(n^{3}\right)$? YES!
Informal justification: The ratio n^{3} / n^{2} is n, which (trivially!) tends to ∞ as n tends to ∞.

Rigorous justification: Want to show that the oformula is satisfied:

$$
\forall c>0 . \exists N . \forall n \geq N . n^{2}<c n^{3}
$$

Suppose we're given some $c>0$. Need to pick a suitable N. Take any $N>1 / c$. Then for all $n \geq N$, we have

$$
c n^{3}=c n \cdot n^{2} \geq c N \cdot n^{2}>c(1 / c) n^{2}=n^{2}
$$

(Idea: If $n>1 / c$, the extra factor n will compensate for the c.)

Examples of o-notation, continued

Example 2: Is it true that $100 \sqrt{n}$ is $o(n)$? YES!
Informal justification: The ratio $n /(100 \sqrt{n})$ is $\sqrt{n} / 100$, which tends to ∞ as n tends to ∞.

Rigorous justification: Want to show that the oformula is satisfied:

$$
\forall c>0 . \exists N . \forall n \geq N .100 \sqrt{n}<c n
$$

Suppose we're given some $c>0$. Need to pick a suitable N.
Take any $N>10000 / c^{2}$. Then for all $n \geq N$, we have

$$
c n=c \sqrt{n} \sqrt{n} \geq c \sqrt{N} \sqrt{n}>c(100 / c) \sqrt{n}=100 \sqrt{n}
$$

How did we pick that $10000 / c^{2}$?
E.g. by working backwards from the requirement $n /(100 \sqrt{n})>1 / c$.

Examples of o-notation, continued

Example 3: Is it true that $n+1000000$ is $o(6 n)$?
NO!
Informal justification: Even though the ratio $6 n /(n+1000000)$
continues to increase as n tends to ∞, it never exceeds 6 , so doesn't tend to ∞.
Rigorous justification: Want to show the negation of the oformula:

$$
\neg(\forall c>0 . \exists N . \forall n \geq N . n+1000000<c .6 n)
$$

which is equivalent to

$$
\exists c>0 . \forall N . \exists n \geq N . n+1000000 \geq c .6 n
$$

$\underbrace{\&}_{0}$ We can take $c=1 / 7$. It's then true for any $n \geq 0$ that

$$
n+1000000>n \geq 6 n / 7=c .6 n
$$

So it's clear that $\forall N . \exists n \geq N . n+1000000 \geq c .6 n$ (given N, can just take $n=N$).

What is ' $o(g)$ ' officially?

Officially, $o(g)$ is a set: namely, the set of all f that 'are $o(g)$ '.

$$
o(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \mid \forall c>0 . \exists N . \forall n \geq N . f(n)<c g(n)\right\}
$$

So, ' f is $o(g)$ ' technically means $f \in o(g)$.
Common convention: Write ' $O(g)$ ' to mean 'some (unspecified) function in the set $o(g)^{\prime}$. E.g.

$$
f=o(g), \quad f(n)=3 n^{2}+o(n)
$$

Needs care: e.g. $n=o\left(n^{2}\right)$ and $2 n=o\left(n^{2}\right)$ don't imply $n=2 n$! But many useful laws are valid, e.g.

$$
o(g)+o(g)=o(g)
$$

which strictly means 'if $f \in o(g)$ and $f^{\prime} \in o(g)$, then $f+f^{\prime} \in o(g)$ '.
(Exercise if you like maths: Prove this from the definition of o.)
IADS Lecture 3 Slide 10

Reducing clutter using o

Asymptotic notation is useful when we're only interested in the broad headlines of how some function behaves.
E.g. Can read $3 n^{2}+o(n)$ as ' $3 n^{2}$ plus small change.'

Reduces clutter and simplifies calculations!
Example: How does the following behave for large n ?

$$
(3 n+5 \sqrt{n}+17 \lg n)(4 n+(\sqrt{n} / \lg n)+12)
$$

(In this course, Ig means logarithm to base 2.)
Rather than expanding this in full, can reason as follows:

$$
\begin{aligned}
(3 n+o(n)+o(n))(4 n+o(n)+o(n)) & =(3 n+o(n))(4 n+o(n)) \\
& =12 n^{2}+o\left(3 n^{2}\right)+o\left(4 n^{2}\right)+o\left(n^{2}\right) \\
& =12 n^{2}+o\left(n^{2}\right)
\end{aligned}
$$

(where every step can be rigorously justified).

Some key points

- Saying $f=o(g)$ gives just the main headlines of how f and g are related: 'In the limit, f is vanishingly small relative to g '. Often, this is all we care about.
- $f=o(g)$ makes a robust statement about f, g.
E.g. unaffected by scaling: $f=o(g) \Leftrightarrow 3 f=o(0.2 g)$.
- So can expect that e.g. ' $T_{M}=o\left(T_{l}\right)$ ' will remain true for any implementations of MergeSort/InsertSort.
- Use of o can reduce clutter and simplify calculations.
- But without sacrificing mathematical rigour: ' $f=o(g)$ ' has a precisely defined meaning.
General advice: Sketch graphs to understand what's going on!

And finally: ω

ω is dual to o. Recall that $f=o(g)$ means:

$$
\forall c>0 . \exists N . \forall n \geq N . f(n)<c g(n)
$$

(' f is asymptotically smaller than / grows slower than g ').
By contrast, read $f=\omega(g)$ as saying:
' f is asymptotically larger than / grows faster than g ').
Formal definition: f is $\omega(g)$ if

$$
\forall C>0 . \exists N . \forall n \geq N . f(n)>C g(n)
$$

('However much we scale g up by, f will eventually overtake it.')
For purpose of comparing f and g, scaling g 'up' by C has same effect as scaling f 'down' by $c=1 / C$. So easy to show:

$$
f=\omega(g) \text { if and only if } g=o(f)
$$

(Compare: $x>y$ if and only if $y<x$.)
We'll tend to use o more than ω.

Next time: O, Ω, Θ.
(Most presentations start with these!)

Reading for Lectures 3 and 4:
Roughgarden Chapter 2
Kleinberg/Tardos Chapter 2, especially 2.2, 2.4
CLRS Chapter 3 (covers whole Gang of Five)
GGT Sections 3.3, 3.4.

