
Introduction to Algorithms and Data Structures

Lecture 4: More asymptotics: O, Ω and Θ

John Longley

School of Informatics
University of Edinburgh

29 September 2022

IADS Lecture 4 Slide 1



Where we’re heading . . .

Recall our runtime functions TI ,TM for InsertSort, MergeSort.
We’ve seen that TM grows slowly relative to TI : TM = o(TI ).

Can we place growth rates of TI ,TM on some absolute scale?

E.g. consider the following hierarchy of ‘simple’ functions:

f0(n) = 1 f1(n) = lg n f2(n) =
√
n

f3(n) = n f4(n) = n lg n f5(n) = n2

f6(n) = n3 f7(n) = 2n f8(n) = 22
n · · ·

Here f0 ∈ o(f1), f1 ∈ o(f2), . . .

Which of the above functions do TI and TM most closely
‘resemble’ in their essential growth rate?

IADS Lecture 4 Slide 2



The big guys: O, Ω, Θ

We’re going to define a relation

f is Θ(g)

Read as ‘f has same essential growth rate as g ’.

Often used to classify ‘complicated’ functions via ‘simple’ ones.

E.g. it will turn out that TI is Θ(n2), and TM is Θ(n lg n).

Approach: First define

f is O(g) ‘f grows no faster than g ’
f is Ω(g) ‘f grows no slower than g ’

Then say:

f is Θ(g) ⇐⇒ f is O(g) and f is Ω(g).

IADS Lecture 4 Slide 3



Big O
The spirit of asymptotics is that:
▶ we only care about behaviour ‘in the limit’ — can discard

‘small’ values of n,
▶ constant scaling factors are washed out.

So let’s say f grows no faster than g , if f is eventually bounded
above by some (sufficiently large) multiple Cg of g :

∃C > 0. ∃N. ∀n ≥ N. f (n) ≤ Cg(n)

Write as f is O(g), and call g an asymptotic upper bound for f .

IADS Lecture 4 Slide 4



Big O: an example

Suppose f (n) = 3n +
√
n and g(n) = n.

Claim: f is O(g). Or more simply, f is O(n).

Proof: Need to show

∃C . ∃N. ∀n ≥ N. 3n +
√
n ≤ Cn

Take C = 4, N = 1.

Then for all n ≥ N = 1, we have
√
n ≤ n, so

3n +
√
n ≤ 4n = Cn

Intuition: 3n is the ‘dominant’ term;
√
n is ‘small change’.

IADS Lecture 4 Slide 5



Comparing o and O

We’ve defined:

f is o(g) means ∀c > 0. ∃N. ∀n ≥ N. f (n) < cg(n)
f is O(g) means ∃C > 0. ∃N. ∀n ≥ N. f (n) ≤ Cg(n)

▶ For o we require that any multiple of g eventually overtakes f .

▶ For O it’s enough that some multiple of g does.

So f = o(g) implies f = O(g).
But not conversely: e.g. f = O(f ) for any f , but f is never o(f ).

Loosely, can think of o as like <, O as like ≤.

Notation: Again, O(g) is officially a set:

O(g) = {f | ∃C ≥ 0. ∃N. ∀n ≥ N. f (n) ≤ Cg(n)}

But common to write e.g. f = O(g) for f ∈ O(g).

IADS Lecture 4 Slide 6



Big O: more examples

Example 1: Let f (n) = (5n + 4)(7n + 100). Is f = O(n2)?
YES!

Informal justification: The dominant term is 35n2; the rest is small
change that is clearly o(n2). So f is O(n2).

Rigorous justification: Want to show:

∃C . ∃N. ∀n ≥ N. (5n + 4)(7n + 100) ≤ Cn2

Note that

▶ 5n + 4 ≤ 6n once n ≥ 4

▶ 7n + 100 ≤ 8n once n ≥ 100.

So for all n ≥ 100, we have f (n) ≤ 48n2.
In other words, C = 48, N = 100 will work.

IADS Lecture 4 Slide 7



A bit of freedom here . . .

We wanted to show

∃C . ∃N. ∀n ≥ N. (5n + 4)(7n + 100) ≤ Cn2

We did this by picking C = 48, N = 100.

There’s some freedom of choice here.
By picking a larger C , can often get away with a smaller N.

E.g. once n ≥ 4, have 5n + 4 ≤ 6n and 7n + 100 ≤ 32n.
So could equally well take C = 6× 32 = 192, N = 4.

Advice: Make life easy for yourself!

IADS Lecture 4 Slide 8



More examples
Example 2: Let f (n) = (5n + 4)(7n + 100). Is f = O(n3)?
YES!

We’ve already shown

∀n ≥ 100. f (n) ≤ 48n2

So certainly
∀n ≥ 100. f (n) ≤ 48n3

Here we say O(n3) is an asymptotic upper bound for f ,
though not a tight upper bound.

We’d write f = Θ(n3) to mean n3 was an asymptotic upper and
lower bound (hence tight). Not true here!

Some authors are less precise in distinguishing O and Θ
(see CLRS, end of Chapter 3). But if Θ applies, it’s fine only to
mention O (or Ω) if that’s the important bit.

IADS Lecture 4 Slide 9



More examples

Example 3: Is 22n = O(2n)? NO!

Informal justification: The ratio 22n/2n is 2n, which tends to
∞ and so will eventually exceed any given constant C . In fact,
22n = ω(2n).

Rigorous justification: Want to show:

¬ (∃C > 0. ∃N. ∀n ≥ N. 22n ≤ C .2n)

in other words

∀C > 0. ∀N. ∃n ≥ N. 22n > C .2n

Given any C > 0 and N, take any n > max(N, lgC ).
Then 2n > C , so 22n > C .2n.

Moral: Do ‘constant factors’ matter? Depends where they occur!

IADS Lecture 4 Slide 10



Big O: final example

Example 4: Is lg(n7) = O(lg n)? YES!

Note that lg(n7) = 7 lg n. So C = 7, N = 1 will do.

IADS Lecture 4 Slide 11



Big Ω
Ω is dual to O. Read f is Ω(g) as: ‘f grows no slower than g ’,
or ‘g is an asymptotic lower bound for f ’.

E.g. for some runtime function T (n):

▶ T (n) = O(g) says runtime is not essentially worse than g(n),

▶ T (n) = Ω(g) says runtime is not essentially better than g(n).

f = Ω(g) says f is eventually bounded below by some (sufficiently
small) multiple cg of g :

∃c > 0. ∃N. ∀n ≥ N. cg(n) ≤ f (n)

Not hard to show f = Ω(g) ⇐⇒ g = O(f ).
IADS Lecture 4 Slide 12



Big Ω: example

Is it true that n −
√
n is Ω(n)? YES!

Informal justification:
√
n becomes negligible relative to n when n

is large. So growth rate of n −
√
n is essentially that of n.

Rigorous justification: Want to show:

∃c. ∃N. ∀n ≥ N. cn ≤ n −
√
n

Take c = 1/2, N = 4.

Then for all n ≥ N = 4, we have
√
n ≤ n/2, so

n −
√
n ≥ n − n/2 = n/2 = cn

IADS Lecture 4 Slide 13



Big Θ
Can now capture the idea that f and g have ‘essentially the same
growth rate’.
Say f is Θ(g) (or g is an asymptotically tight bound for f ) if both
f ∈ O(g) and f ∈ Ω(g).

Equivalently, f ∈ Θ(g) if and only if

∃c1, c2 > 0. ∃N. ∀n ≥ N. c1g(n) ≤ f (n) ≤ c2g(n)

Note also that f = Θ(g) ⇐⇒ g = Θ(f ).

IADS Lecture 4 Slide 14



Examples of Θ

For each of the following functions f , identify some ‘simple’ g such
that f = Θ(g).

Example 1: f (n) = 3n2 − 2n + 19. Answer: f (n) = Θ(n2).

The dominant term is 3n2, the rest is small change.
So f (n) will eventually be sandwiched between 2n2 and 4n2.
(Specifically, can take e.g. c1 = 2, c2 = 4, N = 5.)

Example 2: f (n) = 5− 4/n. Answer: f (n) = Θ(1).

That is, we’re taking our ‘g ’ to be the constant function g(n) = 1.
Then for any n ≥ 1, we have

1.g(n) = 1 ≤ 5− 4/n ≤ 5 = 5.g(n)

So taking c1 = 1, c2 = 5, N = 1 will work.

IADS Lecture 4 Slide 15



Harder example
Identify some simple g such that f = Θ(g).

Example 3: f (n) = Σn
i=11/i .

E.g. f (4) = 1 + 1/2 + 1/3 + 1/4 = 2 1
12 .

Answer: f (n) = Θ(ln n).

Idea: f (n) is close to
∫ n
1 (1/x)dx , which is ln n.

E.g. for n = 4:

Actually, Θ(ln n) is same as Θ(lg n): see Tutorial Sheet 1.

IADS Lecture 4 Slide 16



Growth rates and algorithms

Let’s return to an earlier question. Suppose each implementation J
of (say) MergeSort yields some runtime function TJ .

Question: What do we expect all these TJ to have in common?

Answer: Same growth rate!

∀J, J ′ implementing MergeSort. TJ = Θ(TJ′)

Will justify this next time, and furthermore see that

∀J implementing MergeSort. TJ = Θ(n lg n)

Idea: Asymptotic notation can crisply express essential properties of
algorithms, abstracting away from implementation detail.

Of the Gang of Five, we’ll meet O and Θ most often.

IADS Lecture 4 Slide 17



Some common growth rates

Certain (types of) growth rates crop up frequently, and have names
in common use.

▶ Θ(1): (within) constant time

▶ Θ(lg n): logarithmic time

▶ Θ(n): linear time

▶ Θ(n lg n): log-linear time

▶ Θ(n2): quadratic time

▶ Θ(nk) for some exponent k: polynomial time

▶ Θ(bn) for some base b: exponential time

IADS Lecture 4 Slide 18



Reading (same as for Lecture 3):
Roughgarden Chapter 2
Kleinberg/Tardos Chapter 2, especially 2.2, 2.4
CLRS Chapter 3 (covers whole Gang of Five)
GGT Sections 3.3, 3.4.

IADS Lecture 4 Slide 19


