Introduction to Algorithms and Data Structures

Lecture 4: More asymptotics: O, 2 and ©

John Longley

School of Informatics
University of Edinburgh

29 September 2022

IADS Lecture 4 Slide 1

Where we're heading ...

Recall our runtime functions T;, Ty for InsertSort, MergeSort.
We've seen that Ty, grows slowly relative to T;: Ty, = o(Ty).

Can we place growth rates of T, Tp; on some absolute scale?

E.g. consider the following hierarchy of ‘simple’ functions:

Bn) = 1 fi(n) = lgn f(n) = Va
fs(n) = n fa(n) = nlgn fo(n) = n?
fs(n) = nd fz(n) = 2" fs(n) = 2%

Here fy € o(f1), f1 € o(f2), ...

Which of the above functions do 7, and T, most closely
‘resemble’ in their essential growth rate?

IADS Lecture 4 Slide 2

The big guys: O, €2, ©
We're going to define a relation
fis ©(g)

Read as ‘f has same essential growth rate as g'.

Often used to classify ‘complicated’ functions via ‘simple’ ones.

E.g. it will turn out that T; is ©(n?), and Ty is ©(n Ig n).

Approach: First define

fis O(g) ‘f grows no faster than g’
fis Q(g) ‘f grows no slower than g’

Then say:
fis©(g) < fis O(g) and f is Q(g).

IADS Lecture 4 Slide 3

Big O
The spirit of asymptotics is that:
» we only care about behaviour ‘in the limit" — can discard
‘small’ values of n,
> constant scaling factors are washed out.
So let's say f grows no faster than g, if f is eventually bounded
above by some (sufficiently large) multiple Cg of g:

3C > 0.3IN.Vn> N. f(n) < Cg(n)

Write as f is O(g), and call g an asymptotic upper bound for f.
IADS Lecture 4 Slide 4

Big O: an example

Suppose f(n) =3n+ +/n and g(n) = n.

Claim: f is O(g). Or more simply, f is O(n).
Proof: Need to show

3C.AN.Vn> N.3n++/n< Cn

® Take C—4 N=1.
Then for all n > N =1, we have v/n < n, so

3n++v/n < 4n = Cn

Intuition: 3n is the ‘dominant’ term; /n is ‘small change'.

IADS Lecture 4 Slide 5

Comparing o and O
We've defined:

fiso(g) means VYc>0.3N.Vn> N.f(n) < cg(n)
fis O(g) means 3C >0.3N.Vn> N.f(n) < Cg(n)

» For o we require that any multiple of g eventually overtakes f.

» For O it's enough that some multiple of g does.

So f = o(g) implies f = O(g).
But not conversely: e.g. f = O(f) for any f, but f is never o(f).

Loosely, can think of o as like <, O as like <.
Notation: Again, O(g) is officially a set:

O(g) = {f | 3C>0.3IN.Vn> N. f(n) < Cg(n)}
But common to write e.g. f = O(g) for f € O(g).

IADS Lecture 4 Slide 6

Big O: more examples

Example 1: Let f(n) = (5n + 4)(7n + 100). Is f = O(n?)?
YES!

Informal justification: The dominant term is 35n°; the rest is small
change that is clearly o(n?). So f is O(n?).

Rigorous justification: Want to show:
3C. 3IN.Vn > N. (5n+ 4)(7n + 100) < Cn?

Note that
» 5n+4<6bnoncen>4
» 7n+ 100 < 8n once n > 100.

So for all n > 100, we have f(n) < 48n?.
In other words, C = 48, N = 100 will work.

IADS Lecture 4 Slide 7

A bit of freedom here ...

We wanted to show

3C.3IN.VYn > N. (5n + 4)(7n + 100) < Cn?
We did this by picking C = 48, N = 100.

There's some freedom of choice here.
By picking a larger C, can often get away with a smaller N.

E.g. once n > 4, have bn+4 < 6n and 7n+ 100 < 32n.
So could equally well take C =6 x 32 =192, N = 4.

Advice: Make life easy for yourself!

IADS Lecture 4 Slide 8

More examples
Example 2: Let f(n) = (5n + 4)(7n + 100). Is f = O(n3)?
YES!

We've already shown
Vn > 100. f(n) < 48n?

So certainly
Vn > 100. f(n) < 48n°

Here we say O(n®) is an asymptotic upper bound for f,
though not a tight upper bound.

We'd write f = ©(n3) to mean n® was an asymptotic upper and
lower bound (hence tight). Not true here!

Some authors are less precise in distinguishing O and ©
(see CLRS, end of Chapter 3).

IADS Lecture 4 Slide 9

More examples
Example 3: Is 22" = 0(2")? NO!

Informal justification: The ratio 227/2" is 2", which tends to
oo and so will eventually exceed any given constant C. In fact,
220 = (2M).

Rigorous justification: Want to show:
-(3C >0.3IN.Vn> N.2%" < C.2"
in other words
¥C >0.YN.3n> N.2%" > C.2"

Given any C > 0 and N, take any n > max(N,Ig C).
Then 2" > C, so 2" > C.2".

Moral: Do ‘constant factors’ matter? Depends where they occur!

IADS Lecture 4 Slide 10

Big O: final example

Example 4: Is Ig(n”) = O(lgn)? YES!
Note that Ig(n”) = 7lgn. So C =7, N = 1 will do.

IADS Lecture 4 Slide 11

Big Q2

Q is dual to O. Read £ is Q(g) as: ‘f grows no slower than g’,
or ‘g is an asymptotic lower bound for .

E.g. for some runtime function T(n):

» T(n) = O(g) says runtime is not essentially worse than g(n),
» T(n) =Q(g) says runtime is not essentially better than g(n).

f = Q(g) says f is eventually bounded below by some (sufficiently
small) multiple cg of g:

dc > 0. IN.Vn > N. cg(n) < f(n)

IADS Lecture 4 Slide 12

Big €2: example

Is it true that n — \/nis Q(n)? YES!

Informal justification: y/n becomes negligible relative to n when n
is large. So growth rate of n — \/n is essentially that of n.

Rigorous justification: Want to show:

dc.IN.Yn>N.cn<n—+/n
% Take c =1/2, N = 4.

Then for all n > N = 4, we have \/n < n/2, so

n—+/n > n—-n/2 = n/2 = cn

IADS Lecture 4 Slide 13

Big ©
Can now capture the idea that f and g have ‘essentially the same
growth rate’.

Say f is ©(g) (or g is an asymptotically tight bound for f) if both
feO(g)and f € Qg).

Equivalently, f € ©(g) if and only if

dei, 00 > 0. AN.Vn > N. c1g(n) < f(n) < cg(n)

Note also that f = O(g) < g = O(f).
IADS Lecture 4 Slide 14

Examples of ©

For each of the following functions f, identify some ‘simple’ g such
that f = ©(g).

Example 1: f(n) = 3n? — 2n + 19. Answer: f(n) = ©(n?).
The dominant term is 3n?, the rest is small change.

So f(n) will eventually be sandwiched between 2n? and 4n.
(Specifically, can take e.g. c; =2, cp =4, N =5.)

Example 2: f(n) =5—4/n. Answer: f(n) = ©(1).
That is, we're taking our ‘g’ to be the constant function g(n) = 1.
Then for any n > 1, we have

lg(n) =1 < 5—-4/n < 5 = b5.g(n)

So taking c; =1, o =5, N = 1 will work.

IADS Lecture 4 Slide 15

Harder example
Identify some simple g such that f = O(g).

Example 3: f(n) =X ,1/i.
Eg f(4)=1+1/2+1/3+1/4=2L.
Answer: f(n) = ©(In n).

Idea: f(n) is close to [;"(1/x)dx, which is In n.
E.g. for n =4:

i

§

L

1

! . -
| | | 1
1

|
-
2 3 k- & ®

Actually, ©(In n) is same as ©(lg n): see Tutorial Sheet 1.
IADS Lecture 4 Slide 16

Growth rates and algorithms

Let's return to an earlier question. Suppose each implementation J
of (say) MergeSort yields some runtime function T.

Question: What do we expect all these T, to have in common?

Answer: Same growth rate!

vJ,J' implementing MergeSort. T, = ©(T)

Will justify this next time, and furthermore see that

VJ implementing MergeSort. T, = ©(nlg n)

Idea: Asymptotic notation can crisply express essential properties of
algorithms, abstracting away from implementation detail.

Of the Gang of Five, we'll meet O and © most often.

IADS Lecture 4 Slide 17

Certain (types of) growth rates crop up frequently, and have names
in common use.

» O(1): (within) constant time
O(lg n): logarithmic time
©(n): linear time

©(nlg n): log-linear time
©(n?): quadratic time
O(
o(

nk) for some exponent k: polynomial time

vVVvVvYvyVvyVvyy

b") for some base b: exponential time

IADS Lecture 4 Slide 18

Reading (same as for Lecture 3):
Roughgarden Chapter 2

Kleinberg/Tardos Chapter 2, especially 2.2, 2.4
CLRS Chapter 3 (covers whole Gang of Five)
GGT Sections 3.3, 3.4.

IADS Lecture 4 Slide 19

