Introduction to Algorithms and Data Structures
Lecture 4: More asymptotics: O, Ω and Θ

John Longley

School of Informatics
University of Edinburgh

29 September 2022
Where we’re heading . . .

Recall our runtime functions T_I, T_M for **InsertSort**, **MergeSort**. We’ve seen that T_M grows slowly relative to T_I: $T_M = o(T_I)$.

Can we place growth rates of T_I, T_M on some absolute scale?

E.g. consider the following hierarchy of ‘simple’ functions:

\[
\begin{align*}
 f_0(n) &= 1 \\
 f_1(n) &= \log n \\
 f_2(n) &= \sqrt{n} \\
 f_3(n) &= n \\
 f_4(n) &= n \log n \\
 f_5(n) &= n^2 \\
 f_6(n) &= n^3 \\
 f_7(n) &= 2^n \\
 f_8(n) &= 2^{2^n} \\ &\ldots
\end{align*}
\]

Here $f_0 \in o(f_1)$, $f_1 \in o(f_2)$, . . .

Which of the above functions do T_I and T_M **most closely ‘resemble’ in their essential growth rate?**
The big guys: O, Ω, Θ

We’re going to define a relation

\[
f \text{ is } \Theta(g)
\]

Read as ‘f has same essential growth rate as g’.

Often used to classify ‘complicated’ functions via ‘simple’ ones. E.g. it will turn out that T_I is $\Theta(n^2)$, and T_M is $\Theta(n \lg n)$.

Approach: First define

\[
f \text{ is } O(g) \quad \text{‘f grows no faster than g’}
f \text{ is } \Omega(g) \quad \text{‘f grows no slower than g’}
\]

Then say:

\[
f \text{ is } \Theta(g) \iff f \text{ is } O(g) \text{ and } f \text{ is } \Omega(g).
\]
The spirit of asymptotics is that:
▶ we only care about behaviour ‘in the limit’ — can discard ‘small’ values of n,
▶ constant scaling factors are washed out.

So let’s say f grows no faster than g, if f is eventually bounded above by some (sufficiently large) multiple Cg of g:

$$\exists C > 0. \exists N. \forall n \geq N. f(n) \leq Cg(n)$$

Write as f is $O(g)$, and call g an asymptotic upper bound for f.

IADS Lecture 4 Slide 4
Suppose $f(n) = 3n + \sqrt{n}$ and $g(n) = n$.

Claim: f is $O(g)$. Or more simply, f is $O(n)$.

Proof: Need to show

$$\exists C. \exists N. \forall n \geq N. 3n + \sqrt{n} \leq Cn$$

Take $C = 4$, $N = 1$.

Then for all $n \geq N = 1$, we have $\sqrt{n} \leq n$, so

$$3n + \sqrt{n} \leq 4n = Cn$$

Intuition: $3n$ is the ‘dominant’ term; \sqrt{n} is ‘small change’.
Comparing o and O

We’ve defined:

- f is $o(g)$ means $\forall c > 0. \exists N. \forall n \geq N. f(n) < cg(n)$
- f is $O(g)$ means $\exists C > 0. \exists N. \forall n \geq N. f(n) \leq Cg(n)$

- For o we require that any multiple of g eventually overtakes f.
- For O it’s enough that some multiple of g does.

So $f = o(g)$ implies $f = O(g)$.
But not conversely: e.g. $f = O(f)$ for any f, but f is never $o(f)$.

Loosely, can think of o as like $<$, O as like \leq.

Notation: Again, $O(g)$ is officially a set:

$$O(g) = \{f \mid \exists C \geq 0. \exists N. \forall n \geq N. f(n) \leq Cg(n)\}$$

But common to write e.g. $f = O(g)$ for $f \in O(g)$.

IADS Lecture 4 Slide 6
Big O: more examples

Example 1: Let $f(n) = (5n + 4)(7n + 100)$. Is $f = O(n^2)$?

YES!

Informal justification: The dominant term is $35n^2$; the rest is small change that is clearly $o(n^2)$. So f is $O(n^2)$.

Rigorous justification: Want to show:

$$\exists C. \exists N. \forall n \geq N. (5n + 4)(7n + 100) \leq Cn^2$$

Note that

- $5n + 4 \leq 6n$ once $n \geq 4$
- $7n + 100 \leq 8n$ once $n \geq 100$.

So for all $n \geq 100$, we have $f(n) \leq 48n^2$. In other words, $C = 48$, $N = 100$ will work.
A bit of freedom here . . .

We wanted to show

$$\exists C. \exists N. \forall n \geq N. (5n + 4)(7n + 100) \leq Cn^2$$

We did this by picking $C = 48, \ N = 100$.

There’s some freedom of choice here.
By picking a larger C, can often get away with a smaller N.

E.g. once $n \geq 4$, have $5n + 4 \leq 6n$ and $7n + 100 \leq 32n$.
So could equally well take $C = 6 \times 32 = 192, \ N = 4$.

Advice: Make life easy for yourself!
More examples

Example 2: Let \(f(n) = (5n + 4)(7n + 100) \). Is \(f = O(n^3) \)?

YES!

We’ve already shown

\[\forall n \geq 100. f(n) \leq 48n^2 \]

So certainly

\[\forall n \geq 100. f(n) \leq 48n^3 \]

Here we say \(O(n^3) \) is an asymptotic upper bound for \(f \),
though not a tight upper bound.

We’d write \(f = \Theta(n^3) \) to mean \(n^3 \) was an asymptotic upper and lower bound (hence tight). Not true here!

Some authors are less precise in distinguishing \(O \) and \(\Theta \)
(see CLRS, end of Chapter 3). But if \(\Theta \) applies, it’s fine only to mention \(O \) (or \(\Omega \)) if that’s the important bit.

IADS Lecture 4 Slide 9
More examples

Example 3: Is $2^{2n} = O(2^n)$? **NO!**

Informal justification: The ratio $2^{2n}/2^n$ is 2^n, which tends to ∞ and so will eventually exceed any given constant C. In fact, $2^{2n} = \omega(2^n)$.

Rigorous justification: Want to show:

$$\neg (\exists C > 0. \exists N. \forall n \geq N. 2^{2n} \leq C.2^n)$$

in other words

$$\forall C > 0. \forall N. \exists n \geq N. 2^{2n} > C.2^n$$

Given any $C > 0$ and N, take any $n > \max(N, \lg C)$. Then $2^n > C$, so $2^{2n} > C.2^n$.

Moral: Do ‘constant factors’ matter? **Depends where they occur!**
Example 4: Is $\lg(n^7) = O(\lg n)$? YES!

Note that $\lg(n^7) = 7 \lg n$. So $C = 7$, $N = 1$ will do.
Big Ω

Ω is dual to O. Read f is $\Omega(g)$ as: ‘f grows no slower than g’, or ‘g is an asymptotic lower bound for f’.

E.g. for some runtime function $T(n)$:

- $T(n) = O(g)$ says runtime is not essentially worse than $g(n)$,
- $T(n) = \Omega(g)$ says runtime is not essentially better than $g(n)$.

$f = \Omega(g)$ says f is eventually bounded below by some (sufficiently small) multiple cg of g:

$$\exists c > 0. \exists N. \forall n \geq N. cg(n) \leq f(n)$$

Not hard to show $f = \Omega(g) \iff g = O(f)$.

IADS Lecture 4 Slide 12
Big Ω: example

Is it true that $n - \sqrt{n}$ is $\Omega(n)$? \textbf{YES!}

Informal justification: \sqrt{n} becomes negligible relative to n when n is large. So growth rate of $n - \sqrt{n}$ is essentially that of n.

Rigorous justification: Want to show:

$$\exists c. \exists N. \forall n \geq N. \; cn \leq n - \sqrt{n}$$

Take $c = 1/2$, $N = 4$.

Then for all $n \geq N = 4$, we have $\sqrt{n} \leq n/2$, so

$$n - \sqrt{n} \geq n - n/2 = n/2 = cn$$
Can now capture the idea that \(f \) and \(g \) have ‘essentially the same growth rate’.

Say \(f \) is \(\Theta(g) \) (or \(g \) is an asymptotically tight bound for \(f \)) if both \(f \in O(g) \) and \(f \in \Omega(g) \).

Equivalently, \(f \in \Theta(g) \) if and only if

\[
\exists c_1, c_2 > 0. \exists N. \forall n \geq N. c_1 g(n) \leq f(n) \leq c_2 g(n)
\]

Note also that \(f = \Theta(g) \iff g = \Theta(f) \).
Examples of Θ

For each of the following functions f, identify some ‘simple’ g such that $f = \Theta(g)$.

Example 1: $f(n) = 3n^2 - 2n + 19$. Answer: $f(n) = \Theta(n^2)$.

The dominant term is $3n^2$, the rest is small change. So $f(n)$ will eventually be sandwiched between $2n^2$ and $4n^2$. (Specifically, can take e.g. $c_1 = 2$, $c_2 = 4$, $N = 5$.)

Example 2: $f(n) = 5 - 4/n$. Answer: $f(n) = \Theta(1)$.

That is, we’re taking our ‘g’ to be the constant function $g(n) = 1$. Then for any $n \geq 1$, we have

$$1.g(n) = 1 \leq 5 - 4/n \leq 5 = 5.g(n)$$

So taking $c_1 = 1$, $c_2 = 5$, $N = 1$ will work.
Harder example

Identify some simple g such that $f = \Theta(g)$.

Example 3: $f(n) = \sum_{i=1}^{n} 1/i$.

E.g. $f(4) = 1 + 1/2 + 1/3 + 1/4 = 2\frac{1}{12}$.

Answer: $f(n) = \Theta(\ln n)$.

Idea: $f(n)$ is close to $\int_{1}^{n} (1/x) dx$, which is $\ln n$.

E.g. for $n = 4$:

Actually, $\Theta(\ln n)$ is same as $\Theta(\lg n)$: see Tutorial Sheet 1.
Growth rates and algorithms

Let’s return to an earlier question. Suppose each implementation \(J \) of (say) \textbf{MergeSort} yields some runtime function \(T_J \).

Question: What do we expect all these \(T_J \) to have in common?

Answer: Same growth rate!

\[
\forall J, J' \text{ implementing MergeSort}. \quad T_J = \Theta(T_{J'})
\]

Will justify this next time, and furthermore see that

\[
\forall J \text{ implementing MergeSort}. \quad T_J = \Theta(n \lg n)
\]

Idea: Asymptotic notation can crisply express essential properties of algorithms, abstracting away from implementation detail.

Of the Gang of Five, we’ll meet \(O \) and \(\Theta \) most often.
Some common growth rates

Certain (types of) growth rates crop up frequently, and have names in common use.

- $\Theta(1)$: (within) constant time
- $\Theta(\lg n)$: logarithmic time
- $\Theta(n)$: linear time
- $\Theta(n \lg n)$: log-linear time
- $\Theta(n^2)$: quadratic time
- $\Theta(n^k)$ for some exponent k: polynomial time
- $\Theta(b^n)$ for some base b: exponential time
Reading (same as for Lecture 3):
Roughgarden Chapter 2
Kleinberg/Tardos Chapter 2, especially 2.2, 2.4
CLRS Chapter 3 (covers whole Gang of Five)
GGT Sections 3.3, 3.4.