Introduction to Algorithms and Data Structures

Lecture 4: More asymptotics: O, Ω and Θ

John Longley
School of Informatics
University of Edinburgh

29 September 2022

IADS Lecture 4 Slide 1

Where we're heading ...

Recall our runtime functions T_{I}, T_{M} for InsertSort, MergeSort. We've seen that T_{M} grows slowly relative to $T_{1}: T_{M}=o\left(T_{1}\right)$.
Can we place growth rates of T_{l}, T_{M} on some absolute scale?
E.g. consider the following hierarchy of 'simple' functions:

$$
\begin{array}{lll}
f_{0}(n)=1 & f_{1}(n)=\lg n & f_{2}(n)=\sqrt{n} \\
f_{3}(n)=n & f_{4}(n)=n \lg n & f_{5}(n)=n^{2} \\
f_{6}(n)=n^{3} & f_{7}(n)=2^{n} & f_{8}(n)=2^{2^{n}}
\end{array}
$$

Here $f_{0} \in o\left(f_{1}\right), f_{1} \in o\left(f_{2}\right), \ldots$
Which of the above functions do T_{I} and T_{M} most closely 'resemble' in their essential growth rate?

The big guys: O, Ω, Θ

We're going to define a relation

$$
f \text { is } \Theta(g)
$$

Read as ' f has same essential growth rate as g '.
Often used to classify 'complicated' functions via 'simple' ones.
E.g. it will turn out that T_{I} is $\Theta\left(n^{2}\right)$, and T_{M} is $\Theta(n \lg n)$.

Approach: First define

$$
\begin{array}{ll}
f \text { is } O(g) & \text { ' } f \text { grows no faster than } g ' \\
f \text { is } \Omega(g) & \text { ' } f \text { grows no slower than } g '
\end{array}
$$

Then say:

$$
f \text { is } \Theta(g) \Longleftrightarrow f \text { is } O(g) \text { and } f \text { is } \Omega(g)
$$

Big O

The spirit of asymptotics is that:

- we only care about behaviour 'in the limit' - can discard 'small' values of n,
- constant scaling factors are washed out.

So let's say f grows no faster than g, if f is eventually bounded above by some (sufficiently large) multiple $C g$ of g :

$$
\exists C>0 . \exists N . \forall n \geq N . f(n) \leq C g(n)
$$

Write as f is $O(g)$, and call g an asymptotic upper bound for f. IADS Lecture 4 Slide 4

Big O : an example

Suppose $f(n)=3 n+\sqrt{n}$ and $g(n)=n$.
Claim: f is $O(g)$. Or more simply, f is $O(n)$.
Proof: Need to show

$$
\exists C . \exists N . \forall n \geq N .3 n+\sqrt{n} \leq C n
$$

Make $C=4, N=1$.
Then for all $n \geq N=1$, we have $\sqrt{n} \leq n$, so

$$
3 n+\sqrt{n} \leq 4 n=C n
$$

Intuition: $3 n$ is the 'dominant' term; \sqrt{n} is 'small change'.

Comparing o and O

We've defined:

$$
\begin{array}{ccc}
f \text { is } O(g) & \text { means } & \forall c>0 . \exists N . \forall n \geq N . f(n)<c g(n) \\
f \text { is } O(g) & \text { means } & \exists C>0 . \exists N . \forall n \geq N . f(n) \leq C g(n)
\end{array}
$$

- For o we require that any multiple of g eventually overtakes f.
- For O it's enough that some multiple of g does.

So $f=o(g)$ implies $f=O(g)$.
But not conversely: e.g. $f=O(f)$ for any f, but f is never $o(f)$.
Loosely, can think of o as like $<, O$ as like \leq.
Notation: Again, $O(g)$ is officially a set:

$$
O(g)=\{f \mid \exists C \geq 0 . \exists N . \forall n \geq N . f(n) \leq C g(n)\}
$$

But common to write e.g. $f=O(g)$ for $f \in O(g)$.

Big O : more examples

Example 1: Let $f(n)=(5 n+4)(7 n+100)$. Is $f=O\left(n^{2}\right)$? YES!

Informal justification: The dominant term is $35 n^{2}$; the rest is small change that is clearly $o\left(n^{2}\right)$. So f is $O\left(n^{2}\right)$.

Rigorous justification: Want to show:

$$
\exists C \cdot \exists N . \forall n \geq N \cdot(5 n+4)(7 n+100) \leq C n^{2}
$$

Note that

- $5 n+4 \leq 6 n$ once $n \geq 4$
- $7 n+100 \leq 8 n$ once $n \geq 100$.

So for all $n \geq 100$, we have $f(n) \leq 48 n^{2}$. In other words, $C=48, N=100$ will work.

A bit of freedom here ...

We wanted to show

$$
\exists C . \exists N . \forall n \geq N .(5 n+4)(7 n+100) \leq C n^{2}
$$

We did this by picking $C=48, N=100$.
There's some freedom of choice here.
By picking a larger C, can often get away with a smaller N.
E.g. once $n \geq 4$, have $5 n+4 \leq 6 n$ and $7 n+100 \leq 32 n$.

So could equally well take $C=6 \times 32=192, N=4$.
Advice: Make life easy for yourself!

More examples

Example 2: Let $f(n)=(5 n+4)(7 n+100)$. Is $f=O\left(n^{3}\right)$? YES!

We've already shown

$$
\forall n \geq 100 . f(n) \leq 48 n^{2}
$$

So certainly

$$
\forall n \geq 100 . f(n) \leq 48 n^{3}
$$

Here we say $O\left(n^{3}\right)$ is an asymptotic upper bound for f, though not a tight upper bound.

We'd write $f=\Theta\left(n^{3}\right)$ to mean n^{3} was an asymptotic upper and lower bound (hence tight). Not true here!
Some authors are less precise in distinguishing O and Θ (see CLRS, end of Chapter 3). But if Θ applies, it's fine only to mention O (or Ω) if that's the important bit.

IADS Lecture 4 Slide 9

More examples

Example 3: Is $2^{2 n}=O\left(2^{n}\right) ? \quad \mathbf{N O}$!
Informal justification: The ratio $2^{2 n} / 2^{n}$ is 2^{n}, which tends to ∞ and so will eventually exceed any given constant C. In fact, $2^{2 n}=\omega\left(2^{n}\right)$.

Rigorous justification: Want to show:

$$
\neg\left(\exists C>0 . \exists N . \forall n \geq N .2^{2 n} \leq C .2^{n}\right)
$$

in other words

$$
\forall C>0 . \forall N . \exists n \geq N .2^{2 n}>C .2^{n}
$$

Given any $C>0$ and N, take any $n>\max (N, \lg C)$.
Then $2^{n}>C$, so $2^{2 n}>C .2^{n}$.
Moral: Do 'constant factors' matter? Depends where they occur!

Big O : final example

Example 4: $\operatorname{ls} \lg \left(n^{7}\right)=O(\lg n)$? YES!
Note that $\lg \left(n^{7}\right)=7 \lg n$. So $C=7, N=1$ will do.

$\operatorname{Big} \Omega$

Ω is dual to O. Read f is $\Omega(g)$ as: ' f grows no slower than g ', or ' g is an asymptotic lower bound for f '.
E.g. for some runtime function $T(n)$:

- $T(n)=O(g)$ says runtime is not essentially worse than $g(n)$,
- $T(n)=\Omega(g)$ says runtime is not essentially better than $g(n)$.
$f=\Omega(g)$ says f is eventually bounded below by some (sufficiently small) multiple $c g$ of g :

$$
\exists c>0 . \exists N . \forall n \geq N . \operatorname{cg}(n) \leq f(n)
$$

Not hard to show $f=\Omega(g) \Longleftrightarrow g=O(f)$.
IADS Lecture 4 Slide 12

Big Ω : example

Is it true that $n-\sqrt{n}$ is $\Omega(n)$? YES!
Informal justification: \sqrt{n} becomes negligible relative to n when n is large. So growth rate of $n-\sqrt{n}$ is essentially that of n.

Rigorous justification: Want to show:

$$
\exists c . \exists N . \forall n \geq N . c n \leq n-\sqrt{n}
$$

Take $c=1 / 2, N=4$.
Then for all $n \geq N=4$, we have $\sqrt{n} \leq n / 2$, so

$$
n-\sqrt{n} \geq n-n / 2=n / 2=c n
$$

Big Θ

Can now capture the idea that f and g have 'essentially the same growth rate'.
Say f is $\Theta(g)$ (or g is an asymptotically tight bound for f) if both $f \in O(g)$ and $f \in \Omega(g)$.
Equivalently, $f \in \Theta(g)$ if and only if

$$
\exists c_{1}, c_{2}>0 . \exists N . \forall n \geq N . c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

Note also that $f=\Theta(g) \Longleftrightarrow g=\Theta(f)$.
IADS Lecture 4 Slide 14

Examples of Θ

For each of the following functions f, identify some 'simple' g such that $f=\Theta(g)$.

Example 1: $f(n)=3 n^{2}-2 n+19$. Answer: $f(n)=\Theta\left(n^{2}\right)$.
The dominant term is $3 n^{2}$, the rest is small change.
So $f(n)$ will eventually be sandwiched between $2 n^{2}$ and $4 n^{2}$.
(Specifically, can take e.g. $c_{1}=2, c_{2}=4, N=5$.)
Example 2: $f(n)=5-4 / n . \quad$ Answer: $f(n)=\Theta(1)$.
That is, we're taking our ' g ' to be the constant function $g(n)=1$. Then for any $n \geq 1$, we have

$$
1 . g(n)=1 \leq 5-4 / n \leq 5=5 \cdot g(n)
$$

So taking $c_{1}=1, c_{2}=5, N=1$ will work.

Harder example

Identify some simple g such that $f=\Theta(g)$.
Example 3: $f(n)=\sum_{i=1}^{n} 1 / i$.
E.g. $f(4)=1+1 / 2+1 / 3+1 / 4=2 \frac{1}{12}$.

Answer: $f(n)=\Theta(\ln n)$.
Idea: $f(n)$ is close to $\int_{1}^{n}(1 / x) d x$, which is $\ln n$.
E.g. for $n=4$:

Actually, $\Theta(\ln n)$ is same as $\Theta(\lg n)$: see Tutorial Sheet 1 .
IADS Lecture 4 Slide 16

Growth rates and algorithms

Let's return to an earlier question. Suppose each implementation J of (say) MergeSort yields some runtime function T_{J}.

Question: What do we expect all these T_{J} to have in common?
Answer: Same growth rate!

$$
\forall J, J^{\prime} \text { implementing MergeSort. } T_{J}=\Theta\left(T_{J^{\prime}}\right)
$$

Will justify this next time, and furthermore see that
$\forall J$ implementing MergeSort. $T_{J}=\Theta(n \lg n)$

Idea: Asymptotic notation can crisply express essential properties of algorithms, abstracting away from implementation detail.
Of the Gang of Five, we'll meet O and Θ most often.

Some common growth rates

Certain (types of) growth rates crop up frequently, and have names in common use.

- $\Theta(1)$: (within) constant time
- $\Theta(\lg n)$: logarithmic time
- $\Theta(n)$: linear time
- $\Theta(n \lg n)$: log-linear time
- $\Theta\left(n^{2}\right)$: quadratic time
- $\Theta\left(n^{k}\right)$ for some exponent k : polynomial time
- $\Theta\left(b^{n}\right)$ for some base b : exponential time

Reading (same as for Lecture 3):
Roughgarden Chapter 2
Kleinberg/Tardos Chapter 2, especially 2.2, 2.4
CLRS Chapter 3 (covers whole Gang of Five)
GGT Sections 3.3, 3.4.

