Introduction to Algorithms and Data Structures

Lecture 10: Divide-conquer-combine and the Master Theorem

John Longley

School of Informatics
University of Edinburgh

20 October 2022
Data structures: reflection

We’ve looked at . . .
Data structures: reflection

We’ve looked at . . .

- some classic abstract datatypes (lists, stacks, queues, sets, dictionaries)
Data structures: reflection

We’ve looked at . . .

- some classic abstract datatypes (lists, stacks, queues, sets, dictionaries)
- various concrete implementations of them (via extensible arrays, linked lists, hash tables, red-black trees . . .)

The above datatypes are used frequently in programming – and many other algorithms build on them.

Most of these data structures already provided in standard libraries (e.g. Java API classes).

But understanding of runtime characteristics can help in
- writing efficient programs
- constructing efficient database queries.
Data structures: reflection

We’ve looked at . . .

▶ some classic abstract datatypes (lists, stacks, queues, sets, dictionaries)
▶ various concrete implementations of them (via extensible arrays, linked lists, hash tables, red-black trees . . .)

We’ve analysed their pros/cons in terms of asymptotic runtimes for operations. (Measured as number of line executions, paying attention to what’s allowed as a $\Theta(1)$ time basic memory operation.)
Data structures: reflection

We’ve looked at . . .

▶ some classic abstract datatypes (lists, stacks, queues, sets, dictionaries)
▶ various concrete implementations of them (via extensible arrays, linked lists, hash tables, red-black trees . . .)

We’ve analysed their pros/cons in terms of asymptotic runtimes for operations. (Measured as number of line executions, paying attention to what’s allowed as a $\Theta(1)$ time basic memory operation.)

The above datatypes are used frequently in programming – and many other algorithms build on them.
Data structures: reflection

We’ve looked at . . .

▶ some classic abstract datatypes (lists, stacks, queues, sets, dictionaries)
▶ various concrete implementations of them (via extensible arrays, linked lists, hash tables, red-black trees . . .)

We’ve analysed their pros/cons in terms of asymptotic runtimes for operations. (Measured as number of line executions, paying attention to what’s allowed as a $\Theta(1)$ time basic memory operation.)

The above datatypes are used frequently in programming – and many other algorithms build on them.

Most of these data structures already provided in standard libraries (e.g. Java API classes).
Data structures: reflection

We’ve looked at . . .

▶ some classic abstract datatypes (lists, stacks, queues, sets, dictionaries)
▶ various concrete implementations of them (via extensible arrays, linked lists, hash tables, red-black trees . . .)

We’ve analysed their pros/cons in terms of asymptotic runtimes for operations. (Measured as number of line executions, paying attention to what’s allowed as a \(\Theta(1) \) time basic memory operation.)

The above datatypes are used frequently in programming – and many other algorithms build on them.

Most of these data structures already provided in standard libraries (e.g. Java API classes).

But understanding of runtime characteristics can help in
Data structures: reflection

We’ve looked at . . .

▶ some classic **abstract datatypes** (lists, stacks, queues, sets, dictionaries)
▶ various **concrete implementations** of them (via extensible arrays, linked lists, hash tables, red-black trees . . .)

We’ve analysed their pros/cons in terms of asymptotic runtimes for operations. (Measured as number of line executions, paying attention to what’s allowed as a $\Theta(1)$ time **basic memory operation**.)

The above datatypes are used frequently in programming – and many other algorithms build on them.

Most of these data structures already provided in standard libraries (e.g. Java API classes).

But understanding of runtime characteristics can help in

▶ writing efficient **programs**
Data structures: reflection

We’ve looked at . . .

▶ some classic **abstract datatypes** (lists, stacks, queues, sets, dictionaries)
▶ various **concrete implementations** of them (via extensible arrays, linked lists, hash tables, red-black trees . . .)

We’ve analysed their pros/cons in terms of asymptotic runtimes for operations. (Measured as number of line executions, paying attention to what’s allowed as a $\Theta(1)$ time basic memory operation.)

The above datatypes are used frequently in programming – and many other algorithms build on them.

Most of these data structures already provided in standard libraries (e.g. Java API classes).

But understanding of runtime characteristics can help in

▶ writing efficient programs
▶ constructing efficient database queries.

IADS Lecture 10 Slide 2
Recursion: a recurring theme

As we’ve seen, many algorithms can be presented as recursive: i.e. they involve subcall to (one or more instances of) same problem.

Examples:

▶ \texttt{Expmod}(a,n,m) involves call to \texttt{Expmod}(a,\lfloor n/2 \rfloor,m).

▶ \texttt{Mergesort}(A,m,n) calls \texttt{Mergesort}(A,m,p) and \texttt{Mergesort}(A,p,n).

▶ \texttt{Insert}(x,k) (for binary trees) may call \texttt{Insert}(x.left,k) or \texttt{Insert}(x.right,k).
Recursion: a recurring theme

As we’ve seen, many algorithms can be presented as recursive: i.e. they involve subcall to (one or more instances of) same problem.

Examples:

- \textbf{Expmod} \((a,n,m)\) involves call to \textbf{Expmod} \((a,\lfloor n/2 \rfloor, m)\).
- \textbf{Mergesort} \((A,m,n)\) calls \textbf{Mergesort} \((A,m,p)\) and \textbf{Mergesort} \((A,p,n)\).
- \textbf{Insert} \((x,k)\) (for binary trees) may call \textbf{Insert} \((x.\text{left},k)\) or \textbf{Insert} \((x.\text{right},k)\).

Common pattern:

- ‘Simple’ (e.g. small) instances can be dealt with directly.
- For larger instances, may do work before/during/after the recursive call(s): we divide into subproblems, conquer these, combine results.

E.g. for Mergesort:

- \textbf{divide} is simply checking \(n - m > 1\) and computing \(\lfloor (m + n)/2 \rfloor\).
- \textbf{combine} is merging the two lists returned by the recursive calls.
Recurrence relations

How can we calculate the (asymptotic) runtime for a recursive algorithm?

MergeSort (A,m,n):
 if n–m = 1
 return [A(m)]
 else
 p = ⌊(m+n)/2⌋
 B = **MergeSort** (A,m,p)
 C = **MergeSort** (A,p,n)
 D = **Merge** (B,C)
 return D

Whatever the function T is, it will satisfy

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + F(n) \]

for all \(n > 1 \), where \(F(n) \) is the worst-case time for the divide and combine phases on inputs of size \(n \). Can also say \(T(1) \) is a constant C.
Recurrence relations

How can we calculate the (asymptotic) runtime for a recursive algorithm?

E.g. write $T(n)$ for the worst-case runtime for Mergesort on array segments of size n.

```
MergeSort (A,m,n):
    if n−m = 1
        return [ A(m) ]
    else
        p = ⌊(m+n)/2⌋
        B = MergeSort (A,m,p)
        C = MergeSort (A,p,n)
        D = Merge (B,C)
        return D
```
Recurrence relations

How can we calculate the (asymptotic) runtime for a recursive algorithm?

E.g. write $T(n)$ for the worst-case runtime for Mergesort on array segments of size n.

```plaintext
MergeSort (A,m,n):
  if n−m = 1
    return [ A(m) ]
  else
    p = ((m+n)/2)
    B = MergeSort (A,m,p)
    C = MergeSort (A,p,n)
    D = Merge (B,C)
    return D
```

Whatever the function T is, it will satisfy

$$T(n) = T([n/2]) + T(\lceil n/2 \rceil) + F(n) \text{ for all } n > 1,$$

where $F(n)$ is the worst-case time for the divide and combine phases on inputs of size n. Can also say $T(1)$ is a constant C.

IADS Lecture 10 Slide 4
Recurrence relations, continued

\[T(n) = \begin{cases}
 C & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + F(n) & \text{otherwise}
\end{cases} \]

This is an example of a recurrence relation. If we know \(C \) and \(F \), can compute \(T(n) \) for a specific \(n \), e.g.

\[T(4) = 2T(2) + F(4) = 2(2T(1) + F(2)) + F(4) = 4C + 2F(2) + F(4) \]
Recurrence relations, continued

\[T(n) = \begin{cases}
 C & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + F(n) & \text{otherwise}
\end{cases} \]

This is an example of a recurrence relation. If we know \(C \) and \(F \), can compute \(T(n) \) for a specific \(n \), e.g.

\[T(4) = 2T(2) + F(4) = 2(2T(1) + F(2)) + F(4) = 4C + 2F(2) + F(4) \]

But can we ‘solve’ the rec. rel. to find an explicit formula for \(T(n) \)? Or at least, for its asymptotic growth rate?
Recurrence relations for growth rates

\[
T(n) = \begin{cases}
 C & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + F(n) & \text{otherwise}
\end{cases}
\]

Actually, if we only want the growth rate of \(T \), don’t need to know \(F \) precisely — knowing its growth rate is enough.
Recurrence relations for growth rates

\[T(n) = \begin{cases}
C & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + F(n) & \text{otherwise}
\end{cases} \]

Actually, if we only want the growth rate of \(T \), don’t need to know \(F \) precisely — knowing its growth rate is enough.

E.g. in Mergesort example, have \(F(n) = \Theta(n) \) (time for \textbf{Merge} on lists of length \(n/2 \)).
Recurrence relations for growth rates

\[
T(n) = \begin{cases}
 C & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + F(n) & \text{otherwise}
\end{cases}
\]

Actually, if we only want the growth rate of \(T\), don’t need to know \(F\) precisely — knowing its growth rate is enough.

E.g. in Mergesort example, have \(F(n) = \Theta(n)\) (time for \textbf{Merge} on lists of length \(n/2\)).

Leads to the concept of an asymptotic recurrence relation. E.g.

\[
T(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1 \\
 2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]

Solution we’re seeking isn’t a precise function, but a growth rate.
Recurrence relations for growth rates

\[T(n) = \begin{cases}
 C & \text{if } n = 1 \\
 T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + F(n) & \text{otherwise}
\end{cases} \]

Actually, if we only want the growth rate of \(T \), don’t need to know \(F \) precisely — knowing its growth rate is enough.

E.g. in Mergesort example, have \(F(n) = \Theta(n) \)
(time for \textbf{Merge} on lists of length \(n/2 \)).
Leads to the concept of an asymptotic recurrence relation. E.g.

\[T(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1 \\
 2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]

Solution we’re seeking isn’t a precise function, but a growth rate.
(omission of \(\lfloor - \rfloor \) and \(\lceil - \rceil \) a bit sloppy . . . but can be shown these ‘don’t affect asymptotic solution’ in cases like this.)
Recurrence relations ctd.

Asymp. rec. relation for Mergesort again:

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]
Recurrence relations ctd.

Asymp. rec. relation for Mergesort again:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]

In Lecture 5 we saw informally that in this case \(T(n) = \Theta(n \lg n) \).
Recurrence relations ctd.

Asymp. rec. relation for Mergesort again:

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]

In Lecture 5 we saw informally that in this case \(T(n) = \Theta(n \lg n) \).

Other examples:

- Runtime of \textbf{Expmod}(a,n,m) for fixed \(a,m \):
 \[T(n) = T(n/2) + \Theta(1) \quad \text{for } n > 1 \]
Recurrence relations ctd.

Asymp. rec. relation for Mergesort again:

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]

In Lecture 5 we saw informally that in this case \(T(n) = \Theta(n \lg n) \).

Other examples:

- Runtime of \texttt{Expmod}(a,n,m) for fixed a,m:
 \[T(n) = T(n/2) + \Theta(1) \quad \text{for } n > 1 \]

- Runtime of \texttt{Exp}(a,n) for fixed a (\texttt{Expmod} without the \texttt{mod}):
 \[T(n) = T(n/2) + \Theta(n^2) \quad \text{for } n > 1 \]
Recurrence relations ctd.

Asymp. rec. relation for Mergesort again:

\[T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases} \]

In Lecture 5 we saw informally that in this case \(T(n) = \Theta(n \lg n) \).

Other examples:

- Runtime of \(\text{Expmod}(a,n,m) \) for fixed \(a,m \):
 \[T(n) = T(n/2) + \Theta(1) \quad \text{for } n > 1 \]

- Runtime of \(\text{Exp}(a,n) \) for fixed \(a \) (\(\text{Expmod} \) without the \(\text{mod} \)):
 \[T(n) = T(n/2) + \Theta(n^2) \quad \text{for } n > 1 \]

☆ Can we solve such recurrences systematically? Is there a general pattern here?
How do we come up with solutions?

Approach 1: Use intuition/experience/numerical data to ‘guess’ a solution, then verify it using induction.
How do we come up with solutions?

Approach 1: Use intuition/experience/numerical data to ‘guess’ a solution, then verify it using induction.

Usual concept of induction may need extending a bit. E.g. for MergeSort:
How do we come up with solutions?

Approach 1: Use intuition/experience/numerical data to ‘guess’ a solution, then verify it using induction.

Usual concept of induction may need extending a bit.
E.g. for MergeSort:

Ordinary induction:
How do we come up with solutions?

Approach 1: Use intuition/experience/numerical data to "guess" a solution, then verify it using induction.

Usual concept of induction may need extending a bit.

E.g. for MergeSort:

Ordinary induction:

```
1 2 3 4 5 6
```

‘Log induction’:

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
```
How do we come up with solutions?

Approach 1: Use intuition/experience/numerical data to ‘guess’ a solution, then verify it using induction.

Usual concept of *induction* may need extending a bit.

E.g. for MergeSort:

Ordinary induction:

![Ordinary induction diagram]

‘Log induction’:

![Log induction diagram]

Note: log induction on array size \(n \) \(\sim \) ordinary induction on MergeSort recursion depth.
The Master Theorem

Approach 2: If our recurrence just happens to be of the form . . .

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n \leq n_0 \\
 aT(n/b) + \Theta(n^k) & \text{if } n > n_0
\end{cases} \]

. . . then there’s a Master Theorem that simply gives us the answer. (Also works with ‘floors and ceilings’ around.)
The Master Theorem

Approach 2: If our recurrence just happens to be of the form . . .

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n \leq n_0 \\
aT(n/b) + \Theta(n^k) & \text{if } n > n_0
\end{cases}
\]

. . . then there’s a Master Theorem that simply gives us the answer. (Also works with ‘floors and ceilings’ around.)

The answer depends on how \(a\) compares with \(b^k\) (will explain!). Equivalently, how \(e = \log_b a\) compares with \(k\).

\[
T(n) = \begin{cases}
\Theta(n^e) & \text{if } e > k \\
\Theta(n^k \lg n) & \text{if } e = k \\
\Theta(n^k) & \text{if } e < k
\end{cases}
\]

This applies in many (not all) commonly arising situations. (CLRS 4.5 gives a more general version of the theorem.)
Master Theorem: informal intuition

Think about total work done by all divide / combine phases at each recursion level. Does this increase or decrease as we go down?

▶ Larger \(a\) (no. of subproblems) means more work as we descend.
▶ But larger \(b\) means each subproblem is smaller. If divide/combine work is \(F(n) = \Theta(n^k)\), then reducing problem size by factor \(b\) will reduce this work by \(b^k\).
▶ So break-even point is when \(a = b^k\). In this case, amount of work is 'essentially the same' for all levels.
Master Theorem: informal intuition

Think about total work done by all divide / combine phases at each recursion level. Does this increase or decrease as we go down?

▶ Larger a (no. of subproblems) means more work as we descend.
Master Theorem: informal intuition

Think about **total** work done by all **divide** / **combine** phases at each recursion level. Does this increase or decrease as we go down?

- Larger a (no. of subproblems) means more work as we descend.
- But larger b means each subproblem is smaller. If divide/combine work is $F(n) = \Theta(n^k)$, then reducing problem size by factor b will reduce this work by b^k.

IADS Lecture 10 Slide 10
Master Theorem: informal intuition

Think about **total** work done by all **divide** / **combine** phases at each recursion level. Does this increase or decrease as we go down?

- Larger a (no. of subproblems) means more work as we descend.
- But larger b means each subproblem is smaller. If divide/combine work is $F(n) = \Theta(n^k)$, then reducing problem size by factor b will reduce this work by b^k.
- So break-even point is when $a = b^k$. In this case, amount of work is ‘essentially the same’ for all levels.
A bit more mathematical detail for those interested . . .

- If $a < b^k$, then the most work is done at the top level. Thereafter, amount of work roughly decreases in geometric progression, by factor $r = a/b^k < 1$. So total work will be roughly top-level work ($\Theta(n^k)$) times $1 + r + r^2 + \cdots \leq 1/(1 - r)$ (constant). Still $\Theta(n^k)$.

- If $a > b^k$, work increases by $r = a/b^k > 1$ as we descend. Around $\log_b(n)$ levels. So bottom-level exceeds top-level by $r \log_b(n) = b \log_b(r) \log_b(n)$.

- If $a = b^k$, all levels are 'essentially the same'. So work is roughly (top-level work \times number of levels), i.e. $\Theta(n^k \lg n)$.

IADS Lecture 10 Slide 11
A bit more mathematical detail for those interested . . .

- If $a < b^k$, then the most work is done at the top level. Thereafter, amount of work roughly decreases in geometric progression, by factor $r = a/b^k < 1$.
 So total work will be roughly top-level work ($\Theta(n^k)$) times $1 + r + r^2 + \cdots \leq 1/(1 - r)$ (constant). Still $\Theta(n^k)$.

- If $a > b^k$, work increases by $r = a/b^k > 1$ as we descend. Around $\log_b(n)$ levels. So bottom-level exceeds top-level by

$$r^{\log_b(n)} = b^{\log_b(r) \cdot \log_b(n)} = b^{\log_b(n) \cdot \log_b(a/b^k)} = n^{e-k}$$

So total work comes out as $\Theta(n^k) \cdot \Theta(n^{e-k}) = \Theta(n^e)$.

IADS Lecture 10 Slide 11
A bit more mathematical detail for those interested . . .

- If $a < b^k$, then the most work is done at the top level. Thereafter, amount of work roughly decreases in geometric progression, by factor $r = \frac{a}{b^k} < 1$. So total work will be roughly top-level work ($\Theta(n^k)$) times $1 + r + r^2 + \cdots \leq \frac{1}{1-r}$ (constant). Still $\Theta(n^k)$.

- If $a > b^k$, work increases by $r = \frac{a}{b^k} > 1$ as we descend. Around $\log_b(n)$ levels. So bottom-level exceeds top-level by

$$r^{\log_b(n)} = b^{\log_b(r) \cdot \log_b(n)} = b^{\log_b(n) \cdot \log_b(a/b^k)} = n^{e-k}$$

So total work comes out as $\Theta(n^k) \cdot \Theta(n^{e-k}) = \Theta(n^e)$.

- If $a = b^k$, all levels are ‘essentially the same’. So work is roughly (top-level work \times number of levels), i.e. $\Theta(n^k \lg n)$.
Master Theorem in action

▶ Mergesort recurrence again:

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]

Here \(a = 2, \quad b = 2, \quad k = 1 \). So \(e = \log_b a = 1 \) and \(e = k \).
So we’re in the middle case: \(\Theta(n \log n) \).
Master Theorem in action

▶ Mergesort recurrence again:

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]

Here \(a = 2, \ b = 2, \ k = 1 \). So \(e = \log_2 a = 1 \) and \(e = k \). So we’re in the middle case: \(\Theta(n \log n) \).

▶ Exp(a,n) for fixed a:

\[T(n) = T(n/2) + \Theta(n^2) \quad \text{if } n > 1 \]

Here \(a = 1, \ b = 2, \ k = 2 \). So \(e = \log_2 a = 0 \) and \(e < k \). Work at top-level dominates: solution is \(\Theta(n^2) \).
Master Theorem in action

▶ Mergesort recurrence again:

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]

Here \(a = 2, \ b = 2, \ k = 1 \). So \(e = \log_b a = 1 \) and \(e = k \).
So we're in the middle case: \(\Theta(n \log n) \).

▶ Exp(a,n) for fixed a:

\[T(n) = T(n/2) + \Theta(n^2) \text{ if } n > 1 \]

Here \(a = 1, \ b = 2, \ k = 2 \). So \(e = \log_b a = 0 \) and \(e < k \).
Work at top-level dominates: solution is \(\Theta(n^2) \).

▶ Karatsuba algorithm for multiplying two \(n \)-digit numbers:

\[T(n) = 3T(n/2) + \Theta(n) \text{ if } n > 1 \]

Here \(a = 3, \ b = 2, \ k = 1 \). So \(e = \log_2 3 \) and \(e > k \).
Solution is \(\Theta(n^{1.584\ldots}) \) (cf. \(\Theta(n^2) \) for school method)
Thanks for listening!

Enjoy Mary’s lectures, and see you again in Sem 2 for some language processing and computability theory.