Introduction to Algorithms and Data Structures

Lecture 11: the Heap Data Structure

Mary Cryan

School of Informatics
University of Edinburgh

25th October, 2022
Hello everyone! I will take over the teaching for the remainder of semester 1, and also a large part of semester 2.

Plan for (rest of) semester 1:

11. the Heap Data Structure
12. BuildHeap and HeapSort: running-time
13. QuickSort
14. Graphs I: graph data structures, Breadth-first search
15. Graphs II: DFS, connected components, TopSort
The Heap

Definition
A (max) heap is a “nearly complete” binary tree structure storing items in nodes, where every node is greater than or equal to each of its child nodes.

• The rule for parent/child key values is **weaker** over the tree as a whole than what we have for red-black trees, 2-3-4 trees or AVL trees (in those cases the tree encodes a total-ordering on the keys in the nodes).

• But ... the **topology** of a heap is more restricted than for those other tree structures - we have a binary tree with leaves appearing at depth h and depth $h - 1$, and all depth-h leaves grouped together to the left.

• The heap does not (readily) carry total-order information, but is ideally set-up to efficiently answer “max” questions (suitable for priority queues).

• Neat structure of the topology means we can store the heap in an **array**.
Direct mapping: j-th element of heap stored in index j.
Can use $(2^i - 1) + j - 1$ for index of j-th element on level i.
(depending on "Almost-complete" property).
A heap is an almost-complete binary tree:

- All leaves are either at depth $h - 1$ or depth h (where h is height).
- The depth-h leaves all appear consecutively from left-to-right.

... A heap of height h has between 2^h and $2^{h+1} - 1$ nodes.

$$2^h \leq n \leq 2^{h+1} - 1.$$

Hence taking \lg across this inequality, we see

$$h \leq \lg(n) < h + 1.$$

This will put h in the range $[\lg(n) - 1, \lg(n)]$, ie $\Theta(\lg(n))$.

Lots of our Heap algorithms have worst-case running-time directly related to the height of the Heap.
Main operations on a Heap

We imagine that the heap is stored in the array A.

Heap-Maximum Returns the max element of a Heap - $\Theta(1)$ time.

Max-Heapify Runs in $O(\lg(n))$ time and is used to maintain the (max) Heap property whenever some node/index i has violated the heap rule (but left subtree, right subtree are each Max Heaps).

Heap-Extract-Max Can return (and delete) the maximum item of a Heap in $O(\lg(n))$ time.

Max-Heap-Insert Can insert a new item (and maintain the heap property) in $O(\lg(n))$ time. Same for Heap-Increase-Key.

Build-Max-Heap Special one called Build-Max-Heap will run in $O(n)$ time to build a Heap from scratch from an unordered input array.
Max-Heapify and the other operations

The Max-Heapify operation (called at \(i \)) is used to “fix-up” a Heap where the left-subtree \(\text{Left}(i) \) is a Heap, and so is the right-subtree \(\text{Right}(i) \) … but the value at \(i \) violates the Heap property.

- We will show that Max-Heapify can be implemented in time \(O(h) \) for the height \(h \) of the heap, which is \(O(\lg(n)) \).
 (well, specifically, the height of the Heap rooted at \(i \))

- We can then implement Heap-Extract-Max via the trick of just …
 - Swapping \(A[0] \) (the max element) with \(A[A.\text{heap_size} - 1] \) (the last item in the array), and decrementing \(A.\text{heap_size} \).
 - Then calling Max-Heapify(0) on the Heap to “fix” the error at the root.

- Max-Heapify is also key to the implementation of Build-Max-Heap.
The main work is not returning the max element ($\Theta(1)$ time) but removing the max from the tree.

We copy over the “last node” onto the root, then call Max-Heapify to fix things.
Max-Heapify

We assume that the “left-heap” $\text{Left}(i)$ and the “right-heap” $\text{Right}(i)$ are both max-Heaps. Then $\text{Max-Heapify}(i)$ will “patch-up” the heap from i.

Algorithm $\text{Max-Heapify}(A, i)$

1. $\ell \leftarrow \text{Left}(i)$
2. $r \leftarrow \text{Right}(i)$
3. $\text{largest} \leftarrow i$
4. **if** $\ell < A.\text{heap.size}$ **and** $A[\ell] > A[i]$
5.
 $\text{largest} \leftarrow \ell$
6. **if** $r < A.\text{heap.size}$ **and** $A[r] > A[\text{largest}]$
7.
 $\text{largest} \leftarrow r$
8. **if** $\text{largest} \neq i$
9.
 exchange $A[i]$ with $A[\text{largest}]$
10. $\text{Max-Heapify}(A, \text{largest})$
Max-Heapify

We are calling Max-Heapify from the root node.

Max child of root is 48 on right, need to swap, and then recursively call Max-Heapify on 30 as the child (as in line 10 of the Algorithm).
Max-Heapify . . .

Max child of 30 is 45 on left, need to swap, and then call heapify on 30 as the child.
Max-Heapify ...

Max child of 30 is 4, less than 30. ok. Finish.
Algorithm Max-Heap-Insert(A, k)

1. $A.\text{heap_size} \leftarrow A.\text{heap_size} + 1$
2. $A[\text{heap_size} - 1] \leftarrow k$
3. $j \leftarrow \text{heap_size} - 1$
4. while ($j \neq 0$ and $A[j] > A[\text{Parent}(j)]$) do
 5. exchange $A[j]$ and $A[\text{Parent}(j)]$
 6. $j \leftarrow \text{Parent}(j)$

“Bubble” the item up the tree.
Basically swap k with $A[\text{Parent}(j)]$ if k is bigger.

Why is this correct??

Takes $\Theta(1)$ for adding new last node (initially), and $\Theta(1)$ for every swap. Hence $\Theta(\lg n)$ worst-case in total.
Max-Heap-Insert(48), first add at “last node”. Need to swap 48 with parent 30, because 48 \(>\) 30.
48 has now moved-up
Now need to swap 48 with parent 45, because 48 > 45.
Max-Heap-Insert

Done. 48 is less than root 88, no swap needed.
A Priority queue is a Data Structure for storing collections of elements. They differ in their access policy compared to Lists, Stacks and Queues:

- Every element is associated with a key, which is taken from some linearly ordered set, such as the integers.
- Keys represent priorities:

 A larger key means a higher priority.

Classic application is for access to resources like printers, when different users may have varying priority levels.
Priority Queue operations

Methods of *PriorityQueue*:

- **insertItem** \((k, e)\): Insert element \(e\) with key \(k\).
- **maxElement()**: Return an element with maximum key; an error occurs if the priority queue is empty.
- **removeMax()**: Return and remove an element with maximum key; an error occurs if the priority queue is empty.
- **isEmpty()**: Return **true** if the priority queue is empty and **false** otherwise.

No **findElement** \((k)\) or **removeItem** \((k)\) methods.
Observation:

The maximum key in a binary search tree (like a Red-Black tree) is always stored in the rightmost leaf.

Therefore, all Priority Queue methods can be implemented on an Red-Black tree with running time $\Theta(\lg(n))$ (except isEmpty which is $\Theta(1)$).

However, using a Max Heap we can implement maxElement with Heap-Maximum $\Theta(1)$ time, while still having insertItem (via Max-Heap-Insert) and removeMax (via Heap-Extract-Max) in $\Theta(\lg(n))$ time.

Note Balanced Search trees can be “tweaked” to maintain a direct pointer to the rightmost leaf, to give $\Theta(1)$ for maxElement.
This lecture used content from sections 6.1, 6.2 and 6.3 of [CLRS]:

- I did Max-Heap-Insert more directly than the book.
- I didn’t write the details of Parent, Left, Right on slides.

If working with “Algorithms Illuminated” (by Tim Roughgarden), relevant sections are 10.1, 10.2 and 10.2.

In lecture 12 I will cover:

- The method Build-Heap
- The asymptotic analysis of the running-time of the Heap algorithms (6.1-6.3 of [CLRS])
- Heapsort and its running time (6.4 of [CLRS])