
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 3: Data structures for lists and sets

This sheet covers material from Lectures 7, 8 and 9. The question marked ? may be more
challenging than the rest.

1. In lectures we discussed an implementation of lists via extensible arrays, whose capac-
ity could be expanded when necessary by some factor r (e.g. 1.1).

Programmer P is concerned that this policy may be wasteful on memory when lists
are large, and suggests the following alternative: use an array with initial capacity
1000, and increase by adding 100 each time an expansion is needed.

(a) For this scheme, calculate the total number of copyings involved in performing a
sequence of 5000 append operations, beginning from an empty list. Recall from
Lecture 6 that append adds a single element at the right-hand end of the list. By
a ‘copying’ we mean the copying of a single element from one array to another,
i.e. an execution of an instruction of the form ‘B[i] = A[i]’.

(b) More generally, give a precise formula for the number of copyings required by a
sequence of n appends (beginning from an empty list), with a clear explanation of
how this formula is derived. What is the asymptotic growth rate of this function?
What is the amortized cost of a single append over a long sequence of n appends?

(c) Programmer Q wants to use the original ‘factor r’ approach to expansion with
r = 2, but suggests adding a contraction policy: if the current array capacity is
2000 or more, and the proportion of the array in use dips below 0.5, move the
contents to an array of half the size, freeing up some memory.

What bad behaviour might result from this policy? Suggest a better contraction
policy.

2. (a) Suppose we implement sets of non-negative integers via a hash table of size 10,
with buckets stored as linked lists outside the table itself. Our hash function is
h(n) = n mod 10 (this is chosen to make the arithmetic easy).

With the help of pictures, show what happens when we perform the following
sequence of set operations (starting from a table representing the empty set).

insert(47), insert(93), insert(17), insert(143), insert(777),
contains(93), contains(7)

(b) Alternatively, we can represent such sets by storing the elements within the hash
table itself, using probing to resolve collisions. Since the elements of our sets are
non-negative integers, we may use −1 to indicate a blank entry in the table. We
use the following hash-probe function (again designed to be easy to calculate):
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g(n, i) = (n + (i× F (n)) mod 10 ,

where F is some magical function such that

F (47) = 1, F (93) = 3, F (17) = 3, F (143) = 7, F (777) = 3, F (7) = 1

For example, the successive hash-probe values for 143 are

g(143, 0) = 3, g(143, 1) = 0, g(143, 2) = 7, . . .

Using this scheme, work through what happens when the sequence of set opera-
tions from part (a) is performed.

(c) What could go wrong if for some n we had F (n) = 5?

3. (a) Consider the following red-black tree used to represent a set of integers. (The
black nodes have their integer written in white, the red nodes have it in black.)

Work through what happens when the following are performed in sequence:

insert(5), insert(17)

(b) Starting afresh from the tree depicted above, work through what happens when
we do:

delete(76), delete(59)

(c) ? We’ve discussed how red-black trees can be used to implement sets or dictionar-
ies. Explain how they could also be used to implement lists (a.k.a. vectors), with
operations get(i), set(i, x), insert(i, x), delete(i) and length(), all with worst-case
time O(lg n) (where n is the length of the list). What extra information needs
to be stored on nodes to facilitate this?

(Note: Your scheme should support the representation of arbitrary lists, not just
sorted ones. However, it need not support an efficient membership test.)
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