
Extreme Computing

Distributed Data-Parallel
Programming

Amir Shaikhha, Fall 2023

Part 1

Programming Models/Languages

3
https://ediscoverytoday.com/2023/04/20/2023-internet-minute-infographic-by-ediscovery-today-and-ltmg-ediscovery-trends/

Mainstream Languages for
Data Scientists

4

Mainstream Languages for
Data Scientists (cont.)

Pros
üRapid Development
üLarge community
Cons
vWhat to do with large datasets?

5

Rewrite from scratch L

Is there any language without
this issue?

6

Why Scala is related to
BigData?

7
https://insights.stackoverflow.com/survey/2019

https://insights.stackoverflow.com/survey/2019

8

How to store, manage and process Big Data by
harnessing large clusters of commodity nodes
• MapReduce family: simpler, more

constrained

• Dataflow family: enables more complex
processing & data, optimization opportunities

Mainstream Big Data models

9

Google
Pregel

Microsoft
Dryad

The Hadoop Ecosystem

10

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems

IJPEDS-ProgrammingBigDataAnalysis-PrePrint

6 Taylor & Francis and I.T. Consultant

supported by the leading IT companies, such as Google, Amazon1, Microsoft2 and
IBM3, or by private Cloud infrastructures such as OpenStack4.

3.1.1 Apache Hadoop

Apache Hadoop1 is the most used open source MapReduce implementation. It
can be adopted for developing distributed and parallel applications using many
programming languages. Hadoop relieves developers from having to deal with clas-
sical distributed computing issues, such as load balancing, fault tolerance, data
locality, and network bandwidth saving.
The Hadoop project is not only about the MapReduce programming model

(Hadoop MapReduce module), as it includes other modules such as:

• Hadoop Distributed File System (HDFS): a distributed file system providing fault
tolerance with automatic recovery, portability across heterogeneous commodity
hardware and operating systems, high-throughput access and data reliability.

• Hadoop YARN : a framework for cluster resource management and job schedul-
ing.

• Hadoop Common: common utilities that support the other Hadoop modules.

HDFS
Hadoop Distributed File System

YARN
Cluster resource management

Hadoop MapReduce
Distributed Batch Processing Framework

Ambari
Provisioning, managing and monitoring Hadoop clusters

Pig, Hive
(Query)

Giraph, Hama
(Graph)

Other Hadoop
libraries

Storm, Flink
(Streaming)

Figure 2. Hadoop software stack.

In particular, thanks to the introduction of YARN in 2013, Hadoop turns from a
batch processing solution into a platform for running a large variety of data appli-
cations, such as streaming, in-memory, and graphs analysis. As a result, Hadoop
has become a reference for several other programming systems, such as: Storm and
Flink for streaming data analysis; Giraph and Hama for graph analysis; Pig and
Hive for querying large datasets; Oozie, for managing Hadoop jobs; Ambari for
provisioning, managing, and monitoring Apache Hadoop clusters. An overview of
the Hadoop software stack is shown in Figure 2.

Apache Hadoop provides a low-level of abstraction, because a programmer
can define an application using APIs which are powerful but not easy to use
because they are related to the computing infrastructure. It also requires a low-
level understanding of the system and the execution environment for dealing
with issues related to file systems, networked computers and distributed pro-

1
https://aws.amazon.com/elasticmapreduce/

2
https://azure.microsoft.com/services/hdinsight/

3
https://www.ibm.com/analytics/us/en/technology/hadoop/

4
https://wiki.openstack.org/wiki/Sahara

1
https://hadoop.apache.org/

Spark Software Stack

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems

IJPEDS-ProgrammingBigDataAnalysis-PrePrint

8 Taylor & Francis and I.T. Consultant

3.2.1 Apache Spark

Apache Spark1 is another top project of Apache Software Foundation for Big
Data analysis. Di↵erently from Hadoop, in which intermediate data are always
stored in distributed file systems, Spark stores data in RAM memory and queries
it repeatedly so as to obtain better performance for some classes of applications
compared to Hadoop (e.g., iterative machine learning algorithms) [13]. A Spark
application in defined as a set of independent stages running on a pool of worker
nodes. A stage is a set of tasks executing the same code on di↵erent partitions of
input data.
Spark and Hadoop are considered the leading open source Big Data systems and

thus are supported by every major Cloud providers. As shown in Figure 4, di↵erent
libraries have been built on top of Spark: Spark SQL for dealing with SQL and Data
Frames,MLlib for machine learning, GraphX for graph-parallel computation, Spark
Streaming for building streaming applications. The execution of a generic Spark
application on a cluster is driven by a central coordinator (i.e., the main process
of the application), which can connect with di↵erent cluster managers, such as
Apache Mesos1, YARN, or Spark Standalone (i.e., a cluster manager available as
part of the Spark distribution). Ambari can be used for provisioning, managing,
and monitoring Spark clusters.

Spark Core
Processing Engine

Ambari
Provisioning, managing and monitoring Spark clusters

Mesos / YARN / Standalone
Cluster Resource Management

HDFS / Amazon S3 / OpenStack Swift / Cassandra
Distributed File System & Storage

Spark SQL
(SQL)

MLlib
(Machine
Learning)

GraphX
(Graph processing)

Spark
Streaming
(Streaming)

Other
Spark

libraries

Figure 4. Spark software stack.

Even though in some classes of applications Spark is considered a better alter-
native to Hadoop, in many others it has limitations that make it complementary
to Hadoop. The main limitation of Spark is that datasets should fit in RAM mem-
ory. In addition, it does not provide its own distributed storage system, which is a
fundamental requirement for Big Data applications. To overcome this lack, Spark
has been designed to run on top of several data sources, such as distributed file
systems (e.g., HDFS), Cloud object storages (e.g., Amazon S3, OpenStack Swift)
and NoSQL databases (e.g., Cassandra).
Spark’s real-time processing capability is increasingly being used into applica-

tions that requires to extract insights quickly from data, such as recommendation
and monitoring systems. For this reason, several big companies exploit Spark for
data analysis purpose: SK Telecom analyzes mobile usage patterns of customers,
Ebay uses Spark for log aggregation, and Kelkoo for product recommendations.

1
https://spark.apache.org

1
http://mesos.apache.org/

11

PROGRAMMING MODELS

12

The vision…

13

Huge
data
file

U Result

split 1

split 2

split 3

split 4

split 5

Sample function: convert all text to upper case

Map

Map

Map

Map

Map

out 1

out 2

out 3

out 4

out 5

convertUpper()

Splits may be
stored at diff. nodes

The vision (2)

14

More complicated: the word-count problem
• Huge file à extract frequencies of words
• Example

Extracted frequencies:
• <Logic,1>, <will,2>, <get,1>, <you,2>, …

Logic will get you from A to B.
Imagination will take you everywhere.

Einstein once
said…

The vision (3)

15

Huge
data
file

U Result

split 1

split 2

split 3

split 4

split 5

Sample application: the word-count example

Map

Map

Map

Map

Map

Red
uce

Red
uce

Red
uce

out 1

out 2

out 3

Local
computation

Merging of
results

grouped by word

MapReduce programming model

• Data model: everything is a <key,value> pair
• Programming model - two core functions

– Map(key,value): Invoked for every split of the input data. Value
corresponds to the split.

– Reduce(key,list(values)): Invoked for every unique key emitted
by Map. List(values) corresponds to all values emitted from ALL
mappers for this key.

• These are second-order functions
– Map(key,value, MapperClassName)
– Reduce(key,list(values), ReducerClassName)

à parallelism and deployment handled by the system

16

MapReduce programming model (2)

• The word-count problem
– Input: Text file, broken in splits
– Output: Frequency of each word observed in the file
– Map(key,value): value: a split of the text file

for each word in value

emit pair <word,+1>

– Reduce(key,list(values)): Key: word, values: list of
(+1’s)
count=0
for each value in list(values)

count+=value

emit pair<key,count>
17

MapReduce – under the hood

18

Input
data

Split

Split

Map

Map

Reduce

Reduce

<Logic,1>

<will,1>

<get,1>

<will,1>

<take,1>

<Imagi…,1>

…

…

<Logic,{1}>

<will,{1,1}>

<get,{1}>

<take,{1}>

<Imag..,{1}>

…

…

<Logic,1>

<will,2>

<get,1>

<take,1>

<Imagi…,1>

…

…

DFS
DFS

Map
phase

Shuffle phase

Sort Send Merge Reduce
phase

for each word in value
emit pair <word,+1>

for each value in list(values)
count+=value

emit pair<word,count>

• MapReduce simple but weak for some reqs.
– Cannot define complex processes
– Everything file-based, no distributed memory
– Procedural à difficult to optimize

• Dataflow
– Processing expressed as a DAG, tree, graph with

cycles, …
– Vertices: processing tasks
– Edges: Communication

• DAG: Spark, Dryad
• Tree: Dremel
• Directed graph with cycles: Pregel

19

Spark DAG example

Dataflow programming model

• Describing the processing tasks
– Declarative languages, e.g., Dremel

– Functional programming, e.g., Spark

– Domain-specific languages, e.g., Pregel

20

Dataflow programming model (2)

SELECT DocId AS Id, COUNT(Name.Language.Code)
WITHIN Name AS Cnt FROM t
WHERE REGEXP(Name.Url, '^http');

val wordCounts = textFile.flatMap(line => line.split(" ")).
map(word => (word, 1)).
reduceByKey((a, b) => a + b)

wordCounts.collect()

class PageRankVertex
: public Vertex<double, void, double> {

public: virtual void Compute(MessageIterator* msgs) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

}
};

for graph
processing

Why Spark? (1)

21

Collections

Similar API J

Which programming language is
this?

Integer totalAgeReduce =
roster.stream()

.map(Person::getAge)

.reduce(0, (a, b) -> a + b);

Map<String, List<String>> a = words
.stream().collect(

Collectors.groupingBy(w ->
sortChars(w)));

PLs that have a functional
collection interface like Scala

C++, C#, F#, Clojure, Haskell, Java8,
JavaScript, Perl, PHP, Python, Ruby,
Scheme, Smalltalk, Standard ML, OCAML,
…

See
https://en.wikipedia.org/wiki/Map_(higher-order_function)

https://en.wikipedia.org/wiki/Map_(higher-order_function)

Fault Tolerance

• Essential for scaling out
• The main reason behind the success of

MapReduce in Google
• Requires writing intermediate data to disk

24

Fault Tolerance in Spark

• Data
– Immutable
– In-memory

• Operations = Functional transformations
• Fault tolerance = Replay operations

25

Why Spark? (2)

26http://spark.apache.org/

• Compared to Hadoop MapReduce, improves
efficiency through:
– General execution graphs
– In-memory storage

Up to 10× faster on disk,
100× in memory

http://spark.apache.org/

Why Spark? (3)

27

Why Spark? (4)

28

Learn Scala

29
https://twitter.github.io/scala_school/

https://twitter.github.io/scala_school/

QUESTIONS?

30

