Extreme Computing Semester 1 (2023 - 2024)

Luo Mai, Amir Shaikhha

THE UNIVERSITY of EDINBURGH

Course Timetable

Friday

13:10 - 14:00 and 14:10 - 15:00

AT_Lecture Theatre 3, Appleton Tower

Course Webpage

• The course webpage is hosted on Learn: <u>http://course.inf.ed.ac.uk/exc</u>

• "OR" simply Google: "Extreme computing Edinburgh 23/24"

• The webpage contains ALL the information

Course Staff

- Luo Mai
 - Assistant Professor (Lecturer), School of Informatics
 - Research interests: computer systems, machine learning, data management
 - Homepage: <u>https://luomai.github.io</u>
- Amir Shaikhha
 - Assistant Professor (Lecturer), School of Informatics
 - Research interests: programming languages, compilers, data management
 - Homepage: <u>https://amirsh.github.io</u>

Guest lecturers

- Dr. Dimitrios Vytiniotis, Researcher, Google DeepMind
 - Date: 01/12/2023
 - Topic: TBD
- We may have another guest lecturer from GraphCore, UK
 - Date: TBD
 - Topic: TBD

Communication

- Piazza
 - <u>https://piazza.com/class/Imgiwvg3vlj5ec</u>
- Link is available on the course webpage

Course assessment

• Final exam: 100%

Preferred prerequisites

- Programming languages
 - Strong programming skills
 - Java/Scala/C++
 - Python/bash

• Courses

- Operating systems
- Machine learning

Questions?

Course Overview

Big data

Internet services

Heterogeneous data

Challenges for processing big data

• Increasing data scale

- Internet size: 10s millions of Terabytes (Estimated in 2021)
- New Internet data per day: 100,000s Terabytes (Estimated in 2021)
- 100 GBs 10s PBs data per job (According to Google and Microsoft)

• Increasing processing complexity

- Data aggregates (e.g., min, max, average)
- Machine learning (e.g., clustering)
- Deep learning (e.g., GPT-3)

Limitations of conventional data-centric systems

• Databases

- Examples: Oracle DB, MySQL
- SQL-oriented query workloads
- Structured data
- Expensive custom servers
- High-performance computing systems
 - Examples: Message-Passing-Interface (MPI)
 - Scientific workloads: physics simulation, weather prediction, ...
 - Computation-oriented architecture

Insufficient flexibility and performance

Scaling-up and scaling-out

Adding accelerators (e.g., GPUs) How to design expressive interfaces?

Extreme computing course

- Batch processing
 - MapReduce, Spark
- Stream processing
 - Spark Streaming, Flink
- Graph processing
 - Pregel
- Query processing

 SparkSQL, Pig, Hive
- Linear algebra and ML
 MLlib

- Deep learning frameworks
 TensorFlow, PyTorch
- Distributed machine learning
 - Data parallelism, pipeline parallelism, model parallelism
- Practical machine learning systems
 - Collective communication, parameter servers, data centre networks
- Distributed file systems
 - Google file systems
- Cloud resource management
 - Virtual machines, containers
 - Cluster resource scheduling (Kubernetes)

Approach

Questions?

Break