Text Technologies for Data Science

INFR11145

Definitions

Instructor:
Youssef Al Hariri
Lecture Objectives

• Learn about main concepts in IR
 • Document
 • Information need
 • Query
 • Index
 • BOW
IR in a nutshell

User

Search Engine

Documents

Query

Relevant Documents
IR, basic form

- Given Query Q, find relevant documents D
Two main Issues in IR

About 293,000,000 results (0.79 seconds)

• Effectiveness
 • need to find **relevant** documents
 • needle in a haystack
 • very different from relational DBs (SQL)

• Efficiency
 • need to find them quickly
 • vast quantities of data (100’s billions pages)
 • thousands queries per second (Google, 99,000)
 • data constantly changes, need to keep up
 • compared with other NLP areas, IR is **very** fast
IR main components

• Documents
• Queries
• Relevant documents
Documents

• The element to be retrieved
 • Unstructured nature
 • Unique ID
 • N documents \rightarrow Collection

• web-pages, emails, book, page, sentence, tweets
• photos, videos, musical pieces, code
• answers to questions
• product descriptions, advertisements
• may be in a different language
• may not have words at all (e.g. DNA)
Queries

• Free text to express user’s information need
• Same information need can be described by multiple queries
 • Latest news on the hurricane in the US
 • North Carolina storm
 • Florence
• Same query can represent multiple information needs
 • Apple
 • Jaguar
Queries – different forms

- Web search → keywords, narrative …
- Image search → keywords, sample image
- QA → question
- Music search → humming a tune
- Filtering/recommendation → user’s interest/history
- Scholar search → structured (author, title ..)

- Advanced search
 \[
 \texttt{wsyn}(0.9 \texttt{field} (\texttt{title}, \texttt{phrase} (\text{homer,simpson})) 0.7 \texttt{and} (\texttt{pagerank,3}), \texttt{ow3} (\text{homer,simpson})) 0.4 \texttt{passage} (\text{homer, simpson, dan, castellaneta}))
 \]
Relevance

• At an abstract level, IR is about:
 • does item D match item Q? ...or...
 • is item D relevant to item Q?

• Relevance a tricky notion
 • will the user like it / click on it?
 • will it help the user achieve a task?
 (satisfy information need)
 • is it novel (not redundant)?

• Relevance = what is the topic about?
 • i.e. D, Q share similar “meaning”
 • about the same topic / subject / issue
What is the challenge in relevance?

• No clear semantics, contrast:
 • “William Shakespeare”
 • Author history’s? list of plays? a play by him?

• Inherent ambiguity of language:
 • synonymy: “Edinburgh festival” = “The fringe”
 • polysemy: “Apple”, “Jaguar”

• Relevance highly subjective
 • Relevance: yes/no
 • Relevance: perfect/excellent/good/fair/bad

• On the web: counter SEOs / spam
Relevant Items are Similar

• Key idea:
 • Use similar vocabulary \rightarrow similar meaning
 • Similar documents relevant to same queries

• Similarity
 • String match
 • Word overlap
 • $P(D|Q) \rightarrow$ retrieval model
IR vs. DB

<table>
<thead>
<tr>
<th></th>
<th>Databases</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>What we’re retrieving</td>
<td>Structured data. Clear semantics based on a formal model.</td>
<td>Mostly unstructured. Free text with some metadata.</td>
</tr>
<tr>
<td>Queries we’re posing</td>
<td>Formally-defined (relational algebra, SQL). Unambiguous.</td>
<td>Free text (“natural language”), Boolean</td>
</tr>
<tr>
<td>Results we get</td>
<td>Exact (always “correct”)</td>
<td>Imprecise (need to measure relevance)</td>
</tr>
<tr>
<td>Interaction with system</td>
<td>One-shot queries.</td>
<td>Interaction is important.</td>
</tr>
</tbody>
</table>

Tamer Elsayed, QU
How IR sees documents?
Bag-of-words trick

- Can you guess what this is about:
 - per is salary hour €25,000 Mbappe’s
 - obesity French is of full cause and fat fries

- Re-ordering doesn’t destroy the topic
 - individual words – “building blocks”
 - “bag” of words: a “composition” of “meanings”
Bag-of-words trick

• Most search engines use BOW
 • treat documents, queries as bags of words

• A “bag” is a set with repetitions
 • match = “degree of overlap” between D, Q

• Retrieval models
 • statistical models (function) that use words as features
 • decide which documents most likely to be relevant

• What should be the top results for Q?
 • BOW makes these models tractable
Bag-of-words: Criticism

• word meaning lost without context
 • True, but BOW doesn’t really discard context

• what about negations, etc.?
 • \{no, climate change is real\} vs. \{climate change is no real\}

• does not work for all languages
 • No natural “word” unit for Chinese, images, music
 • Solve by “segmentation” or “feature induction”
IR Black Box

Query

<table>
<thead>
<tr>
<th>Representation Function</th>
</tr>
</thead>
</table>

Documents

<table>
<thead>
<tr>
<th>Transformation Function</th>
</tr>
</thead>
</table>

Query Representation

<table>
<thead>
<tr>
<th>Comparison Function</th>
</tr>
</thead>
</table>

Index

<table>
<thead>
<tr>
<th>BOW</th>
</tr>
</thead>
</table>

Retrieval Model

<table>
<thead>
<tr>
<th>Hits</th>
</tr>
</thead>
</table>

Query Representation Function

<table>
<thead>
<tr>
<th>offline</th>
</tr>
</thead>
</table>

Comparison Function

<table>
<thead>
<tr>
<th>online</th>
</tr>
</thead>
</table>

Transformation Function

<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
</table>

Retrieval Model

<table>
<thead>
<tr>
<th>Hits</th>
</tr>
</thead>
</table>

Youssef Al Hariri, TTDS 2023/2024
Systems perspective on IR

• Indexing Process: (offline)
 → get the data into the system
 • acquire the data from crawling, feeds, etc.
 • store the originals (if needed)
 • transform to BOW and “index”

• Search (retrieval) Process: (online)
 → satisfy users’ requests
 • assist user in formulating query
 • retrieve a set of results
 • help user browse / re-formulate
 • log user’s actions, adjust retrieval model
Indexing Process

Documents acquisition

Text transformation

Document data store

document → unique ID
what can you store?
disk space? rights?
compression?

Index

web-crawling provider feeds
RSS “feeds”
desktop/email

what data do we want?

format conversion. international?
which part contains “meaning”?
word units? stopping? stemming?

© Addison Wesley, 2008
Search Process

- Help user formulate the query by suggesting what he could search for.
- Log user’s actions: clicks, hovering, giving up.
- Fetch a set of results, present to the user.
- Iterate!

Diagram:
- Document data store
- User Interaction
- Ranking
- Index
- Log data
- Evaluation

The image includes arrows indicating the flow of information and processes involved in the search process, with a note that the diagram is from Addison Wesley, 2008.
Summary

• Information Retrieval (IR): core technology
 • selling point: IR is very fast, provides context

• Main issues: effectiveness and efficiency

• Documents, queries, relevance

• Bag-of-words trick

• Search system architecture:
 • indexing: get data into the system
 • searching: help users find relevant data
Resources

• Search Engines: Information Retrieval in Practice, chapter 1 & 2

• Lab 0:
 • You have to be confident doing it!
 • If you have trouble finishing it, think twice before committing to the course
Questions

• Next time:
 • Laws of text (Zipf ….)
 • Vector space models

• Skill to learn by next time:
 • Read text file from disk
 • Read word by word

• Videos:
 • The Zipf Mystery, Vsauce

• Tools:
 • Regular expressions:
 \url{https://www.w3schools.com/python/python_regex.asp}