

Text Technologies for Data Science INFR11145

Laws of Text

Instructor: Youssef Al Hariri

27-Sep-2023

Pre-Lecture

- Lab 0: How did it go?
- Lab 1: this week, important to everyone
 - Try to implement directly after the lectures
 - Ask questions / Share results over Piazza
 - Only attend in-person lab next Tuesday if needed
- Join Piazza

Reminder: Skills to be gained

- Working with large text collections
- Few shell commands
- Python/Perl regex
- TEAM WORK

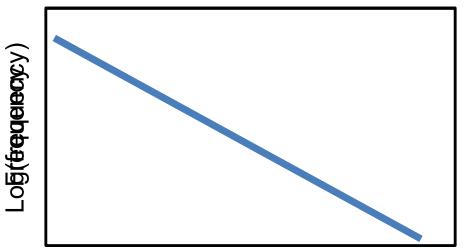
Lecture Objectives

- Learn about some text laws
 - Zipf's law
 - Benford's law
 - Heap's law
 - Clumping/contagion

• This lecture is practical

You can try with me ...

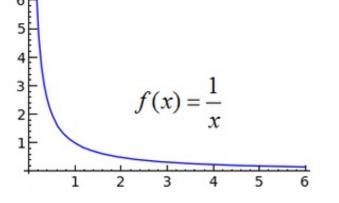
- Shell commands: cat, sort, uniq, grep
- Python (or alternative)
- Excel (or alternative)
- Download the following:
 - Bible: http://www.gutenberg.org/cache/epub/10/pg10.txt


Words' nature

- Word \rightarrow basic unit to represent text
- Certain characteristics are observed for the words we use!
- These characteristics are very consistent, that we can apply laws for them
- These laws apply for:
 - Different languages
 - Different domains of text

Frequency of words

- Some words are very frequent e.g. "the", "of", "to"
- Many words are less frequent e.g. "schizophrenia", "bazinga"
- ~50% terms appears once
- Frequency of words has hard exponential decay


Zipf's Law:

• For a given collection of text, ranking unique terms according to their frequency, then:

 $r \times P_r \cong const$

- *r*, rank of term according to frequency
- P_r , probability of appearance of term

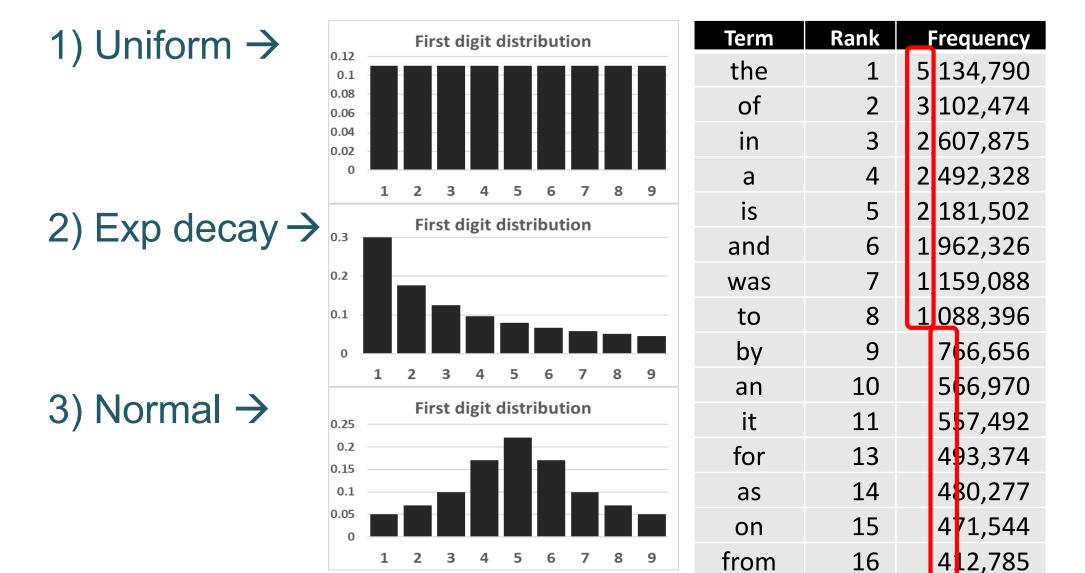
•
$$P_r \cong \frac{const}{r} \to f(x) \cong \frac{1}{x}$$

Wikipedia abstracts

→ 3.5M En abstracts

 $r \times P_r \cong const \rightarrow$ $r \times freq_r \cong const$

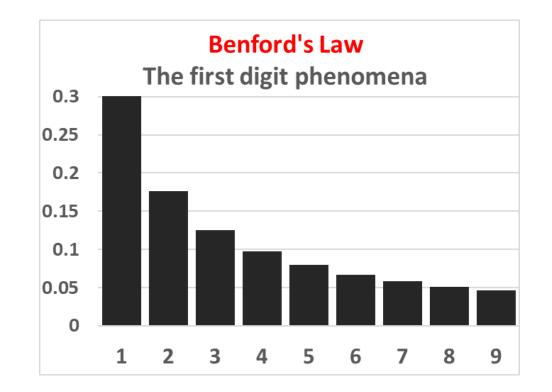
Term	Rank	Frequency	r x freq
the	1	5,134,790	5,134,790
of	2	3,102,474	6,204,948
in	3	2,607,875	7,823,625
а	4	2,492,328	9,969,312
is	5	2,181,502	10,907,510
and	6	1,962,326	11,773,956
was	7	1,159,088	8,113,616
to	8	1,088,396	8,707,168
by	9	766,656	6,899,904
an	10	566,970	5,669,700
it	11	557,492	6,132,412
for	13	493,374	5,970,456
as	14	480,277	6,413,862
on	15	471,544	6,723,878
from	16	412,785	7,073,160



Practical

Collection	# words	File size
Bible	824,054	4.24 MB
Wiki abstracts	80,460,749	472 MB

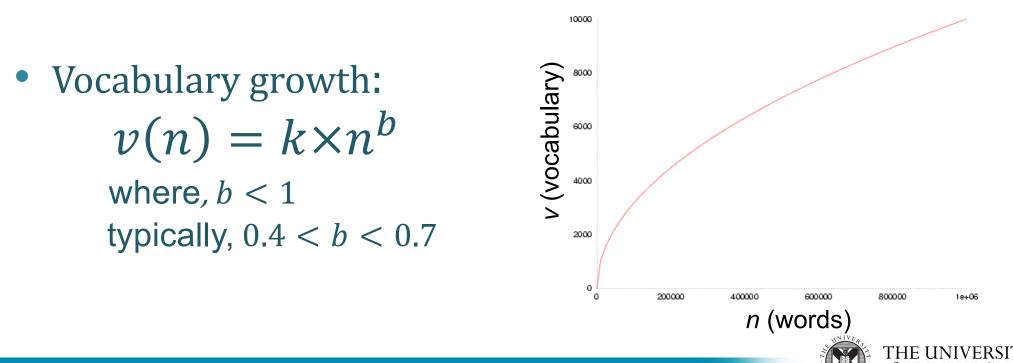
Distribution of first digit in frequencies?



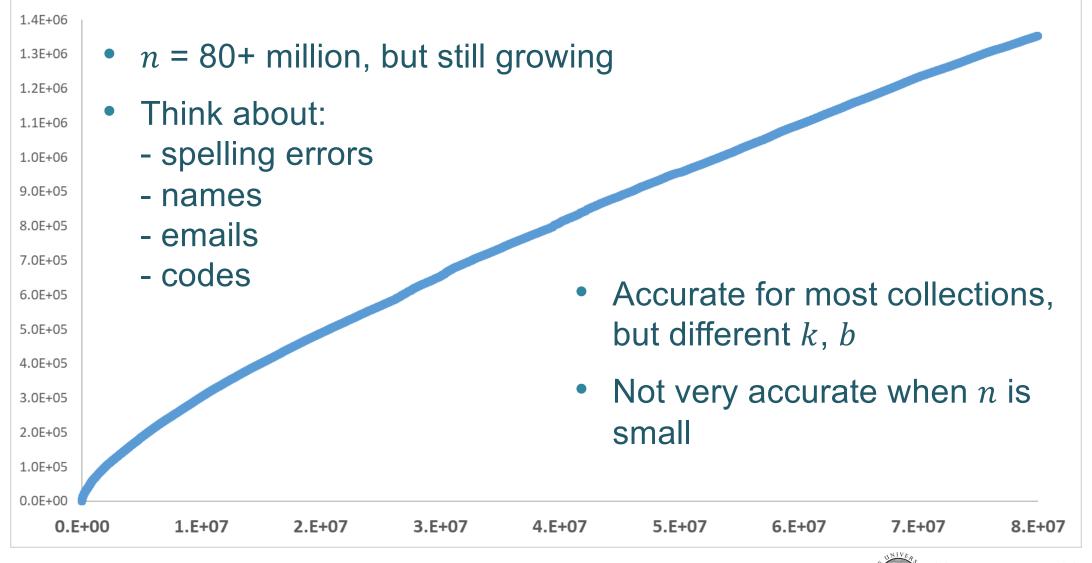
Benford's Law:

- First digit of a number follows a Zipf's like law!
 - Terms frequencies
 - Physical constants
 - Energy bills
 - Population numbers
- Benford's law:

 $P(d) = \log(1 + \frac{1}{d})$



Practical


Heap's Law:

- While going through documents, the number of new terms noticed will reduce over time
- For a book/collection, while reading through, record:
 - *n*: number of words read
 - v: number of news words (unique words)

Heap's Law: shouldn't it saturate?

Wiki Abstract Vocabulary Growth

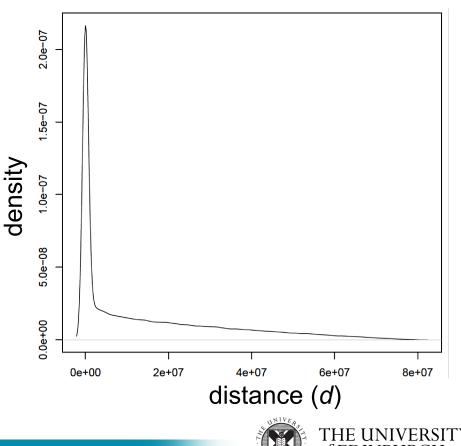
THE UNIVERS of EDINBURGH

Practical

Clumping/Contagion in text

- From Zipf's law, we notice:
 - Most words do not appear that much!
 - Once you see a word once \rightarrow expect to see again!
 - Words are like:
 - Rare contagious disease
 - Not, rare independent lightening

• Words are rare events, but they are contagious



Clumping/Contagion in text

- Wiki abstract collection
 - Identify terms appeared only twice
 - Measure distance between the two occurrences of the terms:

 $d = n_{occurence2} - n_{occurence1}$

- Plot density function of *d*
- Majority of terms appearing only twice appear close to each other.

EDINBURGE

Applying the laws

- Given a collection of 20 billion terms,
- What is the number of unique terms?

Heap's law: $v(n) = k \times n^b$, assume k = 0.25, b = 0.5

- → $v(n) = 0.25 \times (20B)^{0.5} \cong 35M$
- What is the number of terms appearing once?
 Zipf's law → ~17M appeared only once

Summary

- Text follows well-known phenomena
- Text Laws:
 - Zipf
 - Heap
 - Benford
 - Contagion in text

• Try it on another language ...

Recourses

- Text book:
 - Search engines: IR in practice \rightarrow chapter 4
- Videos:
 - Zipf's law, Vsouce: <u>https://www.youtube.com/watch?v=fCn8zs912OE</u>
 - Benford's law, Numberphile: <u>https://www.youtube.com/watch?v=XXjIR2OK1kM</u>
- Tools:
 - Unix commands for windows
 <u>https://sourceforge.net/projects/unxutils</u>

Next Lecture

- Getting ready for indexing?
- Pre-processing steps before the indexing process

- Reminder: 5-10 mins break after L1
 - Have a break, stretch, get food ... etc.
 - Ask questions on chat
 - Questions on L1 are allowed before starting L2
 - Mind teaser math problem (for fun)

