
Introduction to Algorithms and Data Structures

Lecture 6: Representation of program data in
memory

John Longley

School of Informatics
University of Edinburgh

5 October 2023

IADS Lecture 6 Slide 1



Representations of data

Having seen a few algorithms, we now turn to data structures: i.e.
ways of representing/structuring data in memory.

In due course, we’ll see how to implement our own data structures.
But we start at the bottom, with the ‘primitive’ data structures
that programming languages typically provide as built-in.

Actually, we’ll begin one step further back:

How, in general, is program data organized in memory?

Picture is broadly similar for most modern programming languages
(Java, Python, Haskell, . . . ): Stack and Heap.

Remember: simplifying a bit, we think of memory as consisting of
words each with an address (i.e. location).

Any address can be itself be stored in a single word — though there
may be fewer addresses than word values.

IADS Lecture 6 Slide 2



Typical organization of program data in memory

IADS Lecture 6 Slide 3



Program memory: summary

▶ Contents of program variables are stored on a stack, which grows
and shrinks as variables come in and out of scope.

▶ Stack items are contiguously arranged in memory, so must have
fixed size (e.g. 1 or 2 words).

▶ Typically, a stack item contains either a basic value (e.g. 561, True)
or a reference to something on the heap.

▶ Heap objects can live anywhere in memory, be of any size, and may
contain references to other heap objects.

▶ When heap objects are created (allocated), the memory manager
will decide where to put them. But references to other objects can
be changed later – so we can end up with a real mess!

▶ As execution proceeds, some heap objects may become unreachable.
In many languages (e.g. Java, Python, Haskell), a garbage collector
(i.e. memory recycler) detects this and reclaims the space.

IADS Lecture 6 Slide 4



Details may vary . . .
Our picture is mostly ‘Java-like’ (except for the mixed-type array).

▶ In Java, anything of reference type (including ‘objects’ and ‘arrays’)
lives on the heap.
In C, built-in ‘arrays’ live on the stack, and their size is static: an
array variable A has an associated size fixed throughout its lifetime.
In Python, pretty much everything lives on the heap.

▶ Python also offers ‘lists’ and ‘arrays’, both implemented much like
the heap array in our picture. (Difference: ‘lists’ allow mixed types.)
In functional programming languages (Haskell, ML, Lisp), ‘lists’ are
more typically implemented as linked lists.
Java offers many classes for ‘lists’, e.g. ArrayList, LinkedList.

▶ In Java, all reference types have special value null (‘pointer to
nowhere’). Default initial value for any variable/field of ref type.
Closest Python equivalent is None – this is actually a reference to a
specific object, with no fields or methods.

Idea: Once we have the basic picture, we have a framework for
understanding such differences.

IADS Lecture 6 Slide 5



Assignment by reference
In Python or Java, assignment statements have the form

variable = expression

E.g. s = "smiles"[1:5] # assigns ref to s

What does an expression actually evaluate to? Either a basic value
or a reference to a heap object. (Or null in Java.) List example:

This matters! Think what happens when we do L1[2] = 5.

A heap object will be ‘copied’ only if we request it
(e.g. using ‘[:]’ for lists in Python).
Similarly in Java (copying often done by a clone() method).

Geek point: Technically, a small integer like 2 is itself a reference to a
pre-allocated heap object. But harmless to write this ref just as ‘2’.

IADS Lecture 6 Slide 6



Shallow vs. deep cloning

In Python, ‘[:]’ makes only a shallow clone: copies ‘top level only’.
E.g. think about lists of lists:

Again, think what happens with L1[2] = 5.

For a deep clone (fresh copy of entire structure, with no sharing),
we could in this case write L6 = [L1[:],L1[:],L1[:]].

In general, may need to write a (possibly recursive) program to
deep-clone the data structures in question.

IADS Lecture 6 Slide 7



Equality testing
Equality testing can be . . .

▶ by reference (‘are the addresses the same?’), or

▶ by value (‘do we find identical things at those addresses?’)

In Python, is means reference eq (a.k.a. identity),
== means (deep) value eq.

Exercise: After executing column 1, what does column 2 give?

L1 = [1,2,3] L2 is L1

L2 = L1 L4 is L1

L3 = [L1,L1,L1] L2 == L1

L4 = L1[:] L4 == L1

L5 = L3[:] L6 is L3

L6 = [L1[:],L1[:],L1[:]] L6 == L3

Warning: In Java, == means reference equality!
For value equality, typically use an .equals method.

For numbers and strings, always use value equality.
(Identity is unpredicatable!)

IADS Lecture 6 Slide 8



About those NullPointerExceptions
Consider a Java expression of form expr.fieldname. E.g. X.age.

The expr evaluates to a reference, or perhaps to null.

But when we pass the ‘.’, we follow the reference to reach what it
points to (dereferencing) . . . and so risk a NullPointerException if
expr evaluates to null!

Same goes for the ‘.’ in expr.methodname(arguments).
E.g. X.name.length().

Understanding this (and drawing pictures) can go a long way
towards rooting out those pesky NullPointerExceptions.

IADS Lecture 6 Slide 9



Basic operations
The following operations (among others) may all be assumed to
work within constant time (i.e. Θ(1) time):

▶ Reading / writing contents of program variables (basic or ref type).

n n = 341 X Y = X

▶ Accessing / updating a field in a given object (involves deref).

X.age X.age = 51 X.name = s

▶ Accessing / updating an entry in a given array (may involve deref).

A[42] A[42] = 51

▶ Allocating a new object (e.g. of a given class) on the heap (not
counting initialization of fields).

X = new Person()

▶ Allocating a new array on the heap, not counting initialization of all
its entries.

IADS Lecture 6 Slide 10



Linked lists
In Java/Python, Linked list cells would typically be simple objects,
e.g. of class Cell, with fields called key, next and maybe prev.
E.g. a doubly linked list:

In functional languages, singly-linked lists are everywhere, but
presentation may look more abstract. E.g.

L.key written as head L

L.next written as tail L

new Cell(x,L) written as cons(x,L) or x:L
null written as nil or []

Anyway, find nth element of a linked list L takes time Θ(n).

IADS Lecture 6 Slide 11



IADS Lecture 6 Slide 12



Reading:
https://docs.python.org/3/reference/datamodel.html

(just 3.1);
CLRS chapter 10, especially 10.2 and 10.3.

Photograph: Glen Etive from path to Lairig Gartain.
Kyriakos Kalorkoti (by kind permission)

IADS Lecture 6 Slide 13


