
Introduction to Algorithms and Data Structures

Lecture 7: Classic datatypes: lists, stacks, queues

John Longley

School of Informatics
University of Edinburgh

10 October 2023

IADS Lecture 7 Slide 1

‘Lists’ in general . . .

We’ve seen that ‘lists’ can be implemented in several ways, e.g. via
arrays or linked lists. How might we compare these?

Start by listing the operations we’d like any impl to support.

E.g. for (unsorted) lists of items of type X , might want operations

get : int → X # read item at given pos
set : int ∗ X → void # write item at given pos

cons : X → void # add item at start
append : X → void # add item at end
insert : int ∗ X → void

delete : int → void

length : void → int

Much like an interface in Java.

IADS Lecture 7 Slide 2

Abstract interfaces, concrete implementations

As in Java, we can consider various concrete implementations of
this abstract interface.

Further points:

▶ For some purposes, could consider an interface with fewer
operations, or with more: e.g. reverse : void → void.

▶ May be other operations that make sense for specific impl’s.
E.g. for linked lists, ‘insert/delete at current position’ is
useful.

▶ Some of our operations will be definable from others: e.g.

append(x) ≡ insert(length(), x)

But may want to include append in its own right: could be
implementable more efficiently than general insert.

IADS Lecture 7 Slide 3

Implementation 1: Fixed-size arrays

Use an array A of some fixed size m.
Can store a list L = x0, . . . , xn−1 (where n ≤ m)
in the first n cells of A (so A[i] = xi for each i< n).
Also want an integer variable n to store the value of n.

List operations are easy to implement. E.g.

get(i): append(x): insert (i,x):
return A[i] A[n] = x for j = n−1 downto i

n = n+1 A[j+1] = A[j]
A[i] = x
n = n+1

▶ length, get, set and append (when it works) take Θ(1) time.

▶ cons, insert, delete require Θ(n) time in worst case.

IADS Lecture 7 Slide 4

Lists via fixed-size arrays, ctd.

Fixed-size arrays have some strengths . . .

▶ Fast get and set operations – especially if we can keep the
array on the stack!

▶ Fixed, predictable size good for memory management.
(If on stack, can reclaim space immediately on expiry.)

. . . but a major weakness . . .

▶ Can’t cope with lists longer than pre-set limit m.

▶ If a computation involves a lot of lists, of unpredictable sizes,
very likely we’ll either under-cater (some array will overflow)
or over-cater (many arrays will contain a lot of wasted space).

So not a good choice for ‘general-purpose’ lists.

IADS Lecture 7 Slide 5

Implementation 2: Extensible arrays

Idea is simple: if array A overflows, replace it by a bigger one!

▶ If memory space ‘after’ A happens to be free, cheap to do.

▶ But if not, may have to allocate a fresh array B, and copy
contents of A into it. E.g. for some real number r > 1:

append (x):
if n = |A|

B = new array (⌈ n × r ⌉)
copy contents of A into B (n items)
A = B

Now do ordinary append:
A[n] = x
n = n+1

So a ‘normal’ append takes Θ(1) time – but occasionally we may
get a bad one, taking Θ(n).

Might seem ‘dirty’, but widely used in practice.
Runtime analysis is interesting . . .

IADS Lecture 7 Slide 6

Amortized cost
Perhaps in some apps, even one bad append day could be fatal.

But often, we’re happy if over any long run of appends, the average
time is reasonable. A bad one may be acceptable if we regard its
cost as amortized (‘spread out’) over the next 100 good ones –
i.e. if invested effort ‘pays for itself’ over time.

Does it?

Suppose array has initial capacity a, and starting from nil we do m
appends in succession, expanding by factor r > 1 when need be.

Array size grows as a, ar , ar2, ar3, How many steps to reach m?
Solving ‘ar s = m’ yields s = logr (m/a) for the number of steps.
An item may get copied this many times!

Since potential number of copyings of an item grows with m, might
suspect ‘average cost per append’ also grows with m . . . ??

Let’s do the sums.
IADS Lecture 7 Slide 7

Calculating amortized cost of append

Example: Suppose a = 100, r = 1.1, m = 5000.

Note that 1.141a < m < 1.142a. So will need 42 expansions.

Ignoring ‘rounding’, number of copyings (B[i] = A[i]) is basically

100× (1 + 1.1 + 1.12 + · · ·+ 1.141)

By ‘sum of geometric progression’ formula, this is

100× (1.142 − 1)/(1.1− 1) < 1.1m/0.1

So although some items get copied 42 times,
average no. of copyings per item stays below 1.1/0.1 = 11.

In general, total number of copyings is basically at mostm(r/(r−1)).

So average no. of copyings per item stays below r/(r − 1).

IADS Lecture 7 Slide 8

More conceptual argument

Again suppose a = 100, r = 1.1.

Imagine a copying costs 1p. Each time we do an append,
we pay 11p into a pension fund to pay for future copyings.

Suppose we’ve just done our first expansion.
Array now has 110 cells, with 100 filled.
Next 10 appends pay for second expansion (110 copyings).

After second expansion, array has 121 cells, 110 filled.
Next 11 appends pay for third expansion (121 copyings) . . .

So each append incurs a constant cost of 11 copyings.

IADS Lecture 7 Slide 9

Amortized cost: conclusion

So total time taken by expansion/copying is O(m).

But time taken by ordinary appends is also clearly O(m).

So may say the amortized cost of append is O(1) per operation.

▶ Lists in Python are implemented like this, essentially with
r = 9/8. Underlying arrays may also be shrunk if proportion in
use dips below 1/2. (For analysis, see CLRS 17.4.)

▶ Java class ArrayList also works like this. Precise expansion
policy not prescribed, but it’s required that amortized cost
over a long run must be O(1) per operation.

Of course, cons, insert, delete still take time Θ(n) in worst case
(even amortized).

IADS Lecture 7 Slide 10

Implementation 3: Linked lists
We can also represent the lists over X using linked lists, where each
cell contains a key of type X .

Clearly, for a list of length n:

▶ get and set have Θ(n) worst-case time (but with small ‘C ’)

▶ cons takes Θ(1) time, always.

▶ insert(i,x), delete(i) have Θ(n) worst-case time
(or Θ(1) if we’ve already located the cell at position i − 1).

Linked lists also naturally allow for sharing (unlike arrays).
Offline exercise: Show how the list of all 2n binary lists of length
n can be stored in Θ(2n) space with linked list impl.
(Would take Θ(n.2n) with arrays.)

IADS Lecture 7 Slide 11

List implementations: summary

Upper bounds on runtimes (where n is length of list):

Operation Array impl Linked-list impl

get O(1) O(n)
set O(1) O(n)

cons * O(n) O(1)
append * O(n) (amortized O(1)) O(n) (can make it O(1))
insert * O(n) O(n)
delete O(n) O(n)

Operations marked * may fail for fixed-array implementations, or
trigger expansion for extensible-array ones.

So arrays offer fast get/set; linked lists offer fast cons/append
and insert/delete at given position, plus sharing.

?? Is there some impl of lists for which all the above are ‘fast’ ??
Find out in Lecture 9!

IADS Lecture 7 Slide 12

Stacks and queues

Sometimes, we know that some list will only be manipulated in
certain restricted ways, e.g. . . .

▶ Elements only ever added/read/removed at front of list
(stack or Last-in-first-out buffer)

▶ Elements added at back, read/removed at front of list
(queue or First-in-first-out buffer)

Knowing this may affect our choice of implementation.
Interfaces for stacks and queues (of items of type X):

STACKS: QUEUES:

empty : void → bool empty : void → bool

push : X → void enqueue : X → void

peek : void → X peek : void → X
pop : void → X dequeue : void → X

IADS Lecture 7 Slide 13

Implementing stacks

In principle, any impl of lists yields an impl of stacks:

But two obvious candidates:

▶ arrays (growing at end)

▶ linked lists (growing at start)

Operation Extensible array impl Linked list impl

empty O(1) O(1)
push * O(n) (amortized O(1)) O(1)
peek O(1) O(1)
pop O(1) O(1)

IADS Lecture 7 Slide 14

Implementing queues

Impl 1: Wraparound array buffer (fixed-size/extensible)
Impl 2: Linked list with references to first and last cells

IADS Lecture 7 Slide 15

Implementing queues, ctd.

How would e.g. enqueue look in each case?

Wraparound array: Linked list:
enqueue(x): enqueue(x):

j = (j+1) mod |A| last.next = new Cell(x,null)
if j = i last = last.next

fail (or expand)
else A[j] = x

For further details, see Python Lab Sheet 3.

Situation similar to stacks:

Operation Wraparound array impl Linked-list impl

enqueue * O(n) (amortized O(1)) O(1)
peek O(1) O(1)

dequeue O(1) O(1)

IADS Lecture 7 Slide 16

Reading

Stacks and queues: CLRS chapter 10.
Table expansion / amortized analysis: CLRS section 17.4.

IADS Lecture 7 Slide 17

