Introduction to Algorithms and Data Structures

Lecture 8: Sets, dictionaries and hashing

John Longley

School of Informatics
University of Edinburgh

12 October 2023

IADS Lecture 8 Slide 1

Sets and dictionaries

Two important datatypes ...

» (Finite) sets of items of a given type X. E.g. {3,5} = {5,3}

contains
insert
delete
isEmpty

: X — bool
: X — void
: X — void
:void — bool

» Dictionaries (i.e. lookup tables) mapping keys of type X to

values of type Y.

lookup
insert
delete
isEmpty

X=>Y

: X *xY — void
: X — void

: void — bool

IADS Lecture 8 Slide 2

Sets and dictionaries in Python

Beatles = {’John’, ’Paul’, ’George’, ’Ringo’}

’George’ in Beatles # returns True
BeatlesYearsOfBirth =

{’John’:1940, ’Paul’:1942, ’George’:1943, ’Ringo’:1940}
BeatlesYearsOfBirth[’George’] # returns 1943

IADS Lecture 8 Slide 3

Sets and dictionaries via sorted arrays
Could implement sets/dictionaries via (any impl of) lists:
Beatles Rep = [’John’, ’Paul’, ’George’, ’Ringo’]
BeatlesYearsOfBirth Rep = [(’John’,1940), (’Paul’,1942),]

But average-case time for contains/lookup will be ©(n) (terrible!)

Much better if arrays are sorted (by key).
Can then use binary search. E.g. for dictionaries:

binarySearch(A key,i,j): # searches A[i], ..., A[j—1]
ifj—1 =i
if A[i].key = key then return A[i].value else FAIL
else
k=[i+j/2 |
if key < A[k].key then return binarySearch(A key,i k)
else return binarySearch(A key,k,j)

Using this, contains/lookup have worst-case time ©(lg n).
But insert/delete still costly. Can we do better?

IADS Lecture 8 Slide 4

Hash tables

Suppose our keys are strings (e.g. people's names). Number K of
potential keys is vast — number n of actual keys ‘currently in use’
much smaller.

Really silly idea: Give a way of converting strings s to integers 1(s)
(E.g. treat ASCII characters as digits to base 128). Then store value
associated with s in a big array at position (s).

Impractical: K normally far too large, and most of the array would
be unused.

More sensible idea: Choose some hash function # mapping potential
keys s to integers 0,...,m — 1 (hash codes), where m ~ n.
Want # to be easy to compute. E.g. we might define:

#(s) = 1(s) mod m

Then try to use an array A of size m, storing the entry for key s at
position #(s) in A.
IADS Lecture 8 Slide 5

Hashes and clashes
Problem: What if #(s) = #(t) for two keys s, t?

How likely are clashes to arise? E.g. if we took e.g. m ~ 5n (and
accepted the space wastage), would clashes be improbable?

Example: Keys are people, m = 366, #(p) = birthday of p.

How many people must there be for probability of shared birthday
to be > 1/27 (Assume uniform distrib.)

Answer: Just 23! (Sometimes called the birthday paradox.)
See CLRS 5.4.1 for analysis (if you're interested).

Question: In a class of 347 (assuming uniform distrib), what would
be the probability of a birthday shared by 2 people? By 3 people?
By 4,567, ...7

| 2 3 | 4 |5]6 |7|
| > (100 —10712%)% | > 99.9999% | > 99.8% | 66% | 15% | 2% |

IADS Lecture 8 Slide 6

Dealing with clashes

So we must accept clashes (a.k.a. collisions) as a fact of life.

Solution 1: Store a list of entries (or bucket) for each hash value.

(Omit value components if it's just a set.)

Write n for number of entries, m for array size.
The ratio @« = n/m is called the load on the hash table:
may be <1 or > 1.

If we've decided on a desired load a, can ‘expand-and-rehash’ any
time n gets too large (amortized cost is reasonable).

IADS Lecture 8 Slide 7

Bucket-list hash tables: some analysis

Recall: n table entries, m hash codes, & = n/m.
Write b; for number of entries in ith bucket.

Let's analyse average time for an unsuccessful lookup.
Assume that for k not in the table, #(k) equally likely
to be any of the m hash codes.

If #(k) =i, lookup will do b; key comparisons if unsuccessful.

So average number of key comparisons is

1m—1
—Zb,- = n/m = «
M

If computing #(k) itself takes O(1) time, conclude that average
time for unsuccessful lookup is ©(«). (Thinking of & — 0.)

Can also show the same for successful lookup, assuming all keys
present in table are equally likely. See CLRS 11.2.

IADS Lecture 8 Slide 8

Making a proper hash of it

Rarely true that all potential keys (e.g. strings) ‘equally probable’.
But in the interests of ‘balancing’ our hash table, we'd like the hash
codes 0,..., m—1 to be all equally likely.

Bad choice: #(s) = «(s) mod 128. Effectively just last character of s.
So avoid powers of two!

Also not great: #(s) = 1(s) mod 127. Gives #(s) = #(t) whenever s, t
are anagrams. So #(‘algorithms’) = #(‘logarithms’).

Better: #(s) = u(s) mod 97. Primes not too close to powers of
two are reasonable.

Just the start of the delicate art of hash function design. ..

But whatever we do, worst case (all keys hashing to same code)
is always terrible. A malicious user who knew your hash function
could force this to happen ...

IADS Lecture 8 Slide 9

Open addressing and probing

Solution 2: Rather than keeping bucket lists outside the hash table,
store all items within the table itself (open addressing).

To deal with clashes, we use not just a simple hash function #(k),
but a function #(k, i) where 0 < i < m. For a key k:

» #(k,0) is our first choice of hash value,
> #(k,1) is our second choice, etc.
so that #(k,0),#(k,1),...,#(k,m — 1) is a permutation of

0,...,m—1. (Ideally, for a randomly chosen k, all m! permutations
should be equally likely.)

To insert an item e with key k, probe A[#(k,0)], A[#(k,1)],...
until we find a free slot A[#(k, /)], then put e there.

To lookup an item with key k, probe A[#(k,0)], A[#(k,1)],...
until we find either an item with key k, or free cell (lookup failed).

IADS Lecture 8 Slide 10

Probing: example
Let's use an array A of size m = 10 to store a set of integers.

0|1|2]3]4|5]6]7|8]09]|

58 28 | 49 |
Probe function: #(k, i) = (k + i) mod 10.
insert(49). #(49,0) = 9: free.
insert(28). #(28,0) = 8: free.
insert(58). #(58,0) = 8: taken. #(58,1) = 9: taken.
#(58,2) = 0: free.

contains(28). #(28,0) =8, A[8] = 28. So true.
contains(58). #(58,0) = 8, A[8] = 28 # 58.

#(58,1) =9, A[9] = 49 # 58.

#(58,2) = 0: A[0] = 58. So true.
contains(39). #(39,0) =9, A[9] = 49 # 39.

#(39,1) =0, A[0] = 58 # 39.
#(39,2) =1, A[1] free. So false.

IADS Lecture 8 Slide 11

Probing: pros and cons

» Expected number of probes for insert (and hence for lookup)
stays low until table is nearly full. (Can show it's 1/(1 — «) for
unsuccessful lookup; less for successful one.)

» No need for pointers. The memory this saves can be ‘spent’
on increasing table size m and so decreasing load « . ..

So compared to bucket lists, get faster lookup for same
amount of memory.

» However, delete is a pain for the probing approach.
» Design of probing functions is again a delicate art
(linear probing, quadratic probing, double hashing, ...).

See CLRS 11.4 for more details.

IADS Lecture 8 Slide 12

For interest only: Perfect hashing

» All the approaches we've mentioned are bad in the worst case:
size of bucket/sequence of probes can be of length n.

> Even in typical cases, probably some buckets will be large
relative to «v. (Birthday paradox!)

If we could avoid clashes altogether, these problems would vanish!
Would get worst-case ©(1) lookup.

If set of keys is static (no insert/delete required), may be worth
finding a perfect hash function (no clashes) for this set of keys.

As part of Coursework 1, we'll explore a state-of-the-art approach
to perfect hashing.

IADS Lecture 8 Slide 13

Reading:

Roughgarden 12.1-12.4 (good!)

CLRS Chapter 11, omitting theorems and their proofs, except
for Theorem 11.1 which corresponds to slide 8.

IADS Lecture 8 Slide 14

