
Introduction to Algorithms and Data Structures

Lecture 9: Balanced trees

John Longley

School of Informatics
University of Edinburgh

17 October 2023

IADS Lecture 9 Slide 1



Tackling that ‘worst case’
▶ We’ve considered hash table implementations of

sets/dictionaries in which lookup/insert/delete are usually
fast – but worst case time for all operations is Θ(n).

▶ For lists (a.k.a. vectors): some operations have worst-case
time Θ(1), but insert/delete are Θ(n) even in average case.

??? Can we find implementations of sets/dictionaries/lists for which
all operations have acceptable worst-case times ???

This lecture: We’ll see that ‘balanced trees’ (e.g. red-black trees)
achieve this: all ops have worst-case and average time Θ(lg n).

Will do sets/dictionaries here; ideas can also be applied to lists.

IADS Lecture 9 Slide 2



Representing sets by trees

Consider binary trees: each node x has a left and a right branch,
each of which may be null or a pointer to a child node.
(Implementation detail: should use doubly linked tree structures.)

Write L(x),R(x) for left and right subtrees at x (may be empty).

Label nodes with keys (e.g. integers or strings) in such a way that
for every node x we have

∀y ∈ L(x). y .key < x .key , ∀z ∈ R(x). x .key < z .key

Can use such trees to represent sets of keys.
(For dictionaries, just add value component to each node.)

IADS Lecture 9 Slide 3



Implementing contains/lookup
This is easy. Let a node x stand for the tree rooted at x .

contains’(x,k):
if x = null then return False
else if x.key = k then return True
else if k < x.key then return contains’(x.left,k)
else return contains’(x.right,k)

contains(k):
return contains’(root,k)

Suppose the tree has n nodes and is perfectly balanced, i.e. all
non-leaf nodes have 2 children, and all leaf nodes are at the same
depth d . (Possible only if n = 2d+1 − 1.)
Then d = ⌊lg n⌋, so contains will take time O(lg n).

More generally, for trees that are ‘not too unbalanced’ (say max
depth ≤ 2⌈lg n⌉), can say contains take O(lg n) time.

However, worst case is still Θ(n)!

IADS Lecture 9 Slide 4



Insert on binary trees

This too is easy: walk down tree to find where k wants to go, and
create a new leaf node for it.

insert’(x,k):
if x.key = k then return KeyAlreadyPresent
else if k < x.key then

if x.left = null then x.left = new Node(k)
else insert’(x.left,k)

else
if x.right = null then x.right = new Node(k)
else insert’(x.right,k)

insert(k):
if root = null then root = new Node(k)
else return insert’(root,k)

Again, O(lg n) time if tree not too unbalanced, Θ(n) in worst case.

NB. Nothing here to guard against tree becoming unbalanced!

IADS Lecture 9 Slide 5



Delete on binary trees
A bit more subtle. To perform delete(j):
▶ Locate the node y bearing j (assume there is one).
▶ If y has no children, can just delete it.
▶ If y has one child, easy to elide the node y (Fig. 1).
▶ If y has two children:

▶ Locate leftmost node in R(y), i.e. starting at y , turn right,
then left as often as possible. This finds the node z bearing the
smallest key in R(y) (call it k).

▶ Copy z .key to y .key.
▶ If z has a right child, elide z , otherwise just delete z . (Fig. 2).

Same runtime characteristics.
IADS Lecture 9 Slide 6



Balanced tree representations

General strategy:

▶ Work with some special class of trees (red-black trees) that
are guaranteed to be ‘not too unbalanced’, so that all
operations will take time O(lg n).

▶ Whenever an insert/delete threatens to take us outside this
class, do some ‘re-balancing’ work to restore it.
Clever bit: Can arrange that this re-balancing work also takes
just O(lg n) time!

This leads to worst-case O(lg n) time for all operations.

This broad strategy works for several classes of trees:
red-black trees, AVL trees, 2-3 trees, . . .

We choose red-black trees as the most entertaining of these.
Covered in detail in Sedgewick+Wayne and in CLRS.

IADS Lecture 9 Slide 7



Small preliminary: adding trivial nodes

For mathematical convenience, extend our trees so that original null
branches now point to trivial nodes, with no children and bearing
no key. Original nodes are proper nodes.

Call this an extended tree.

Just makes rules easier to state.
Wouldn’t need these trivial nodes in an implementation.

IADS Lecture 9 Slide 8



Red-black trees

Work with extended trees as above.
In a red-black tree, every node is coloured red or black.

▶ Root and all (trivial) leaves are black.

▶ All paths root → leaf contain same number b of blacks.

▶ On a path root → leaf, never have two reds in a row.

So min possible path length is b, and max is 2b − 1.

Red-black trees are not too unbalanced.
There are b− 1 ‘complete levels’ of proper nodes, so n ≥ 2b−1 − 1.
Hence b ≤ lg(n + 1) + 1, so all path lengths ≤ 2 lg(n + 1) + 1.
So contains works as usual with worst-case time Θ(lg n).

IADS Lecture 9 Slide 9



Insert for red-black trees

Can insert a key-bearing node as usual (adding two trivial leaves).
Colour it red. This all takes O(lg n) time.

Problem: Resulting tree might no longer be a legal red-black tree:

▶ New red node might have red parent (2 reds in succession), or

▶ (Trivial case) New red node might be root (should be black).

So need to apply a fix-up operation to restore red-black-ness.

Main ingredient is the red-uncle rule:

(Just colour-flipping: fast. No rewiring involved!)

IADS Lecture 9 Slide 10



Insert fix-up, continued
Applying the red-uncle rule pushes a red upward, so may result in
another double-red higher up.

So we apply the red-uncle rule as often as possible (will be at most
O(lg n) times). We’ll then be in one of three endgame scenarios:

1. Problem cured: tree now legal.

2. Red pushed to root: turn it black.
Adds 1 to all black-lengths.

3. Have some configuration involving a black with 4 ‘nearest
black descendants’. Replace by obvious ‘balanced’ version:

=⇒

O(1) amount of rewiring.
Note order of constituents is preserved: AaBbCcD.
(Subtrees A,B,C,D may be empty.)

IADS Lecture 9 Slide 11



Delete for red-black trees
Just the main ideas: won’t give full details.

Do delete as usual: this involves removing some proper node z .

Problem: All paths must have same black-length. So if z was black,
want to remove z but keep the ‘blackness’.

Easy case: Node it haunts is now red: can just turn it black.

Wandering black rule: apply this as often as possible (will be
O(lg n) times).

IADS Lecture 9 Slide 12



Delete for red-black trees: the endgame

Finitely many endgame scenarios, each fixable in O(1) time. E.g.

▶ Floating black haunts a red node: turns it black.

▶ Floating black reaches root: just remove it.

▶ We’re in some other fixable scenario, e.g.

Blue square and green triangle are colour variables.

▶ 4 other scenarios like this: see CLRS 13 for full details.

IADS Lecture 9 Slide 13



Balanced trees: conclusion

▶ Balanced trees offer a way of implementing sets/dictionaries
so that all operations have worst-case time O(lg n). (Idea can
be applied to lists too.)

▶ Not much to choose between red-black and AVL trees. AVL
are ‘more balanced’ (better for lookup); red-blacks possibly
have faster insert/delete.

▶ Red-black trees used in practice:
▶ Linux completely fair scheduler
▶ Java 8 HashMap class: dictionary via bucket-style hash table,

but each bucket is a red-black tree rather than a linked list.
Retains excellent typical-case performance of hash tables, but
kills off the nasty ‘worst cases’.

Reading:
Sedgewick+Wayne 3.2 (first half) and 3.3 (second half)
CLRS 12.1-12.3, 13.1-13.3

IADS Lecture 9 Slide 14


