Introduction to Algorithms and Data Structures
 Lecture 10: Divide-conquer-combine and the Master Theorem

John Longley
School of Informatics
University of Edinburgh

19 October 2023

Data structures: reflection

We've looked at . . .

- some classic abstract datatypes (lists, stacks, queues, sets, dictionaries)
- various concrete implementations of them (via extensible arrays, linked lists, hash tables, red-black trees ...)

We've analysed their pros/cons in terms of asymptotic runtimes for operations. (Measured as number of line executions, paying attention to what's allowed as a $\Theta(1)$ time basic memory operation.)
The above datatypes are used frequently in programming - and many other algorithms build on them.
Most of these data structures already provided in standard libraries (e.g. Java API classes).

But understanding of runtime characteristics can help in

- writing efficient programs
- constructing efficient database queries.

IADS Lecture 10 Slide 2

Recursion: a recurring theme

As we've seen, many algorithms can be presented as recursive: i.e. they involve subcall to (one or more instances of) same problem.

Examples:

- Expmod(a,n,m) involves call to Expmod(a, $\mathrm{n} / 2\rfloor, \mathrm{m})$.
- Mergesort(A,m,n) calls Mergesort(A,m,p) and Mergesort(A,p,n).
- Insert(x, k) (for binary trees) may call $\operatorname{Insert}(\mathrm{x} . \mathrm{left}, \mathrm{k})$ or Insert(x.right,k).

Common pattern:

- 'Simple' (e.g. small) instances can be dealt with directly.
- For larger instances, may do work before/during/after the recursive call(s): we divide into subproblems, conquer these, combine results.
E.g. for Mergesort:
- divide is simply checking $n-m>1$ and computing $\lfloor(m+n) / 2\rfloor$.
- combine is merging the two lists returned by the recursive calls.

Recurrence relations

How can we calculate the (asymptotic) runtime for a recursive algorithm?
E.g. write $T(n)$ for the worst-case runtime for Mergesort on array segments of size n.

```
MergeSort (A,m,n):
        if \(n-m=1\)
        return [A(m)]
    else
    \(\mathrm{p}=\lfloor(\mathrm{m}+\mathrm{n}) / 2\rfloor\)
    \(B=\) MergeSort (A,m,p)
    \(C=\) MergeSort (A, \(\mathrm{p}, \mathrm{n}\) )
    \(D=\) Merge ( \(B, C\) )
    return D
```

Whatever the function T is, it will satisfy

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+F(n) \text { for all } n>1,
$$

where $F(n)$ is the worst-case time for the divide and combine phases on inputs of size n. Can also say $T(1)$ is a constant C.

IADS Lecture 10 Slide 4

Recurrence relations, continued

$$
T(n)= \begin{cases}C & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+F(n) & \text { otherwise }\end{cases}
$$

This is an example of a recurrence relation.
If we know C and F, can compute $T(n)$ for a specific n, e.g.
$T(4)=2 T(2)+F(4)=2(2 T(1)+F(2))+F(4)=4 C+2 F(2)+F(4)$

But can we 'solve' the rec. rel. to find an explicit formula for $T(n)$? Or at least, for its asymptotic growth rate?

Recurrence relations for growth rates

$$
T(n)= \begin{cases}C & \text { if } n=1 \\ T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+F(n) & \text { otherwise }\end{cases}
$$

Actually, if we only want the growth rate of T, don't need to know
F precisely - knowing its growth rate is enough.
E.g. in Mergesort example, have $F(n)=\Theta(n)$
(time for Merge on lists of length $n / 2$).
Leads to the concept of an asymptotic recurrence relation. E.g.

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { otherwise }\end{cases}
$$

Solution we're seeking isn't a precise function, but a growth rate.
(Omission of $\lfloor-\rfloor$ and $\lceil-\rceil$ a bit sloppy \ldots but can be shown these 'don't affect asymptotic solution' in cases like this.)

IADS Lecture 10 Slide 6

Recurrence relations ctd.

Asymp. rec. relation for Mergesort again:

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { otherwise }\end{cases}
$$

In Lecture 5 we saw informally that in this case $T(n)=\Theta(n \lg n)$.
Other examples:

- Runtime of $\operatorname{Expmod}(a, n, m)$ for fixed a, m :

$$
T(n)=T(n / 2)+\Theta(1) \quad \text { for } \mathrm{n}>1
$$

- Runtime of $\operatorname{Exp}(\mathrm{a}, \mathrm{n})$ for fixed a (Expmod without the mod):

$$
T(n)=T(n / 2)+\Theta\left(n^{2}\right) \quad \text { for } \mathrm{n}>1
$$

\star Can we solve such recurrences systematically?
Is there a general pattern here?

How do we come up with solutions?

Approach 1: Use intuition/experience/numerical data to 'guess' a solution, then verify it using induction.

Usual concept of induction may need extending a bit.
E.g. for MergeSort:

Ordinary induction:

'Log induction':

Note: log induction on array size $n \simeq$ ordinary induction on MergeSort recursion depth.

The Master Theorem

Approach 2: If our recurrence just happens to be of the form ...

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq n_{0} \\ a T(n / b)+\Theta\left(n^{k}\right) & \text { if } n>n_{0}\end{cases}
$$

... then there's a Master Theorem that simply gives us the answer.
(Also works with 'floors and ceilings' around.)
The answer depends on how a compares with b^{k} (will explain!).
Equivalently, how $e=\log _{b}$ a compares with k.

$$
T(n)= \begin{cases}\Theta\left(n^{e}\right) & \text { if } e>k \\ \Theta\left(n^{k} \lg n\right) & \text { if } e=k \\ \Theta\left(n^{k}\right) & \text { if } e<k\end{cases}
$$

This applies in many (not all) commonly arising situations.
(CLRS 4.5 gives a more general version of the theorem.)

Master Theorem: informal intuition

Think about total work done by all divide / combine phases at each recursion level. Does this increase or decrease as we go down?

- Larger a (no. of subproblems) means more work as we descend.
- But larger b means each subproblem is smaller. If divide/combine work is $F(n)=\Theta\left(n^{k}\right)$, then reducing problem size by factor b will reduce this work by b^{k}.
- So break-even point is when $a=b^{k}$. In this case, amount of work is 'essentially the same' for all levels.

IADS Lecture 10 Slide 10

Optional slide (not examinable)

A bit more mathematical detail for those interested...

- If $a<b^{k}$, then the most work is done at the top level.

Thereafter, amount of work roughly decreases in geometric progression, by factor $r=a / b^{k}<1$.
So total work will be roughly top-level work $\left(\Theta\left(n^{k}\right)\right)$ times $1+r+r^{2}+\cdots \leq 1 /(1-r)$ (constant). Still $\Theta\left(n^{k}\right)$.

- If $a>b^{k}$, work increases by $r=a / b^{k}>1$ as we descend. Around $\log _{b}(n)$ levels. So bottom-level exceeds top-level by

$$
r^{\log _{b}(n)}=b^{\log _{b}(r) \cdot \log _{b}(n)}=b^{\log _{b}(n) \cdot \log _{b}\left(a / b^{k}\right)}=n^{e-k}
$$

So total work comes out as $\Theta\left(n^{k}\right) \cdot \Theta\left(n^{e-k}\right)=\Theta\left(n^{e}\right)$.

- If $a=b^{k}$, all levels are 'essentially the same'. So work is roughly (top-level work \times number of levels), i.e. $\Theta\left(n^{k} \lg n\right)$.

Master Theorem in action

- Mergesort recurrence again:

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { otherwise }\end{cases}
$$

Here $a=2, b=2, k=1$. So $e=\log _{b} a=1$ and $e=k$.
So we're in the middle case: $\Theta(n \log n)$.

- $\operatorname{Exp}(a, n)$ for fixed a :

$$
T(n)=T(n / 2)+\Theta\left(n^{2}\right) \quad \text { if } n>1
$$

Here $a=1, b=2, k=2$. So $e=\log _{b} a=0$ and $e<k$.
Work at top-level dominates: solution is $\Theta\left(n^{2}\right)$.

- Karatsuba algorithm for multiplying two n-digit numbers:

$$
T(n)=3 T(n / 2)+\Theta(n) \quad \text { if } n>1
$$

Here $a=3, b=2, k=1$. So $e=\log _{2} 3$ and $e>k$. Solution is $\Theta\left(n^{1.584 \ldots}\right)$ (cf. $\Theta\left(n^{2}\right)$ for school method)

Thanks for listening!

Enjoy Aris's lectures, and see you again in Sem 2 for some language processing and computability theory.

Reading for today's lecture:
Roughgarden Chapter 4 (recommended)
CLRS Chapter 4, especially 4.5
KT Chapter 5 (many good examples, doesn't explicitly state MT)
GTG 4.2 (relevant, again doesn't explicitly state MT)

