
Introduction to Algorithms and Data Structures

Lecture 10: Divide-conquer-combine and the
Master Theorem

John Longley

School of Informatics
University of Edinburgh

19 October 2023

IADS Lecture 10 Slide 1

Data structures: reflection
We’ve looked at . . .

▶ some classic abstract datatypes (lists, stacks, queues, sets,
dictionaries)

▶ various concrete implementations of them (via extensible
arrays, linked lists, hash tables, red-black trees . . .)

We’ve analysed their pros/cons in terms of asymptotic runtimes
for operations. (Measured as number of line executions, paying
attention to what’s allowed as a Θ(1) time basic memory operation.)

The above datatypes are used frequently in programming – and
many other algorithms build on them.

Most of these data structures already provided in standard libraries
(e.g. Java API classes).

But understanding of runtime characteristics can help in

▶ writing efficient programs
▶ constructing efficient database queries.

IADS Lecture 10 Slide 2

Recursion: a recurring theme
As we’ve seen, many algorithms can be presented as recursive: i.e.
they involve subcall to (one or more instances of) same problem.

Examples:

▶ Expmod(a,n,m) involves call to Expmod(a,⌊n/2⌋,m).

▶ Mergesort(A,m,n) calls Mergesort(A,m,p) and Mergesort(A,p,n).

▶ Insert(x,k) (for binary trees) may call Insert(x.left,k) or
Insert(x.right,k).

Common pattern:

▶ ‘Simple’ (e.g. small) instances can be dealt with directly.

▶ For larger instances, may do work before/during/after the recursive
call(s): we divide into subproblems, conquer these, combine results.

E.g. for Mergesort:

▶ divide is simply checking n −m > 1 and computing ⌊(m + n)/2⌋.
▶ combine is merging the two lists returned by the recursive calls.

IADS Lecture 10 Slide 3

Recurrence relations
How can we calculate the (asymptotic) runtime for a recursive
algorithm?

E.g. write T (n) for the worst-case runtime for Mergesort on array
segments of size n.

MergeSort (A,m,n):
if n−m = 1

return [A(m)]
else

p = ⌊(m+n)/2⌋
B = MergeSort (A,m,p)
C = MergeSort (A,p,n)
D = Merge (B,C)
return D

Whatever the function T is, it will satisfy

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + F (n) for all n > 1 ,

where F (n) is the worst-case time for the divide and combine phases
on inputs of size n. Can also say T (1) is a constant C .

IADS Lecture 10 Slide 4

Recurrence relations, continued

T (n) =

{
C if n = 1
T (⌊n/2⌋) + T (⌈n/2⌉) + F (n) otherwise

This is an example of a recurrence relation.
If we know C and F , can compute T (n) for a specific n, e.g.

T (4) = 2T (2)+F (4) = 2(2T (1)+F (2))+F (4) = 4C +2F (2)+F (4)

But can we ‘solve’ the rec. rel. to find an explicit formula for T (n)?
Or at least, for its asymptotic growth rate?

IADS Lecture 10 Slide 5

Recurrence relations for growth rates

T (n) =

{
C if n = 1
T (⌊n/2⌋) + T (⌈n/2⌉) + F (n) otherwise

Actually, if we only want the growth rate of T , don’t need to know
F precisely — knowing its growth rate is enough.

E.g. in Mergesort example, have F (n) = Θ(n)
(time for Merge on lists of length n/2).

Leads to the concept of an asymptotic recurrence relation. E.g.

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) otherwise

Solution we’re seeking isn’t a precise function, but a growth rate.

(Omission of ⌊−⌋ and ⌈−⌉ a bit sloppy . . . but can be shown these
‘don’t affect asymptotic solution’ in cases like this.)

IADS Lecture 10 Slide 6

Recurrence relations ctd.
Asymp. rec. relation for Mergesort again:

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) otherwise

In Lecture 5 we saw informally that in this case T (n) = Θ(n lg n).

Other examples:
▶ Runtime of Expmod(a,n,m) for fixed a,m:

T (n) = T (n/2) + Θ(1) for n>1

▶ Runtime of Exp(a,n) for fixed a (Expmod without the mod):

T (n) = T (n/2) + Θ(n2) for n>1

⋆ Can we solve such recurrences systematically?
Is there a general pattern here?

IADS Lecture 10 Slide 7

How do we come up with solutions?

Approach 1: Use intuition/experience/numerical data to
‘guess’ a solution, then verify it using induction.

Usual concept of induction may need extending a bit.
E.g. for MergeSort:

Ordinary induction:

‘Log induction’:

Note: log induction on array size n ≃
ordinary induction on MergeSort recursion depth.

IADS Lecture 10 Slide 8

The Master Theorem

Approach 2: If our recurrence just happens to be of the form . . .

T (n) =

{
Θ(1) if n ≤ n0
aT (n/b) + Θ(nk) if n > n0

. . . then there’s a Master Theorem that simply gives us the answer.
(Also works with ‘floors and ceilings’ around.)

The answer depends on how a compares with bk (will explain!).
Equivalently, how e = logb a compares with k .

T (n) =


Θ(ne) if e > k
Θ(nk lg n) if e = k
Θ(nk) if e < k

This applies in many (not all) commonly arising situations.
(CLRS 4.5 gives a more general version of the theorem.)

IADS Lecture 10 Slide 9

Master Theorem: informal intuition
Think about total work done by all divide / combine phases at
each recursion level. Does this increase or decrease as we go down?

▶ Larger a (no. of subproblems) means more work as we descend.

▶ But larger b means each subproblem is smaller. If divide/combine
work is F (n) = Θ(nk), then reducing problem size by factor b will
reduce this work by bk .

▶ So break-even point is when a = bk . In this case, amount of work is
‘essentially the same’ for all levels.

IADS Lecture 10 Slide 10

Optional slide (not examinable)

A bit more mathematical detail for those interested . . .

▶ If a < bk , then the most work is done at the top level.
Thereafter, amount of work roughly decreases in geometric
progression, by factor r = a/bk < 1.
So total work will be roughly top-level work (Θ(nk))
times 1 + r + r2 + · · · ≤ 1/(1− r) (constant). Still Θ(nk).

▶ If a > bk , work increases by r = a/bk > 1 as we descend.
Around logb(n) levels. So bottom-level exceeds top-level by

r logb(n) = blogb(r). logb(n) = blogb(n). logb(a/b
k) = ne−k

So total work comes out as Θ(nk).Θ(ne−k) = Θ(ne).

▶ If a = bk , all levels are ‘essentially the same’. So work is
roughly (top-level work × number of levels), i.e. Θ(nk lg n).

IADS Lecture 10 Slide 11

Master Theorem in action
▶ Mergesort recurrence again:

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) otherwise

Here a = 2, b = 2, k = 1. So e = logb a = 1 and e = k .
So we’re in the middle case: Θ(n log n).

▶ Exp(a,n) for fixed a:

T (n) = T (n/2) + Θ(n2) if n > 1

Here a = 1, b = 2, k = 2. So e = logb a = 0 and e < k .
Work at top-level dominates: solution is Θ(n2).

▶ Karatsuba algorithm for multiplying two n-digit numbers:

T (n) = 3T (n/2) + Θ(n) if n > 1

Here a = 3, b = 2, k = 1. So e = log2 3 and e > k .
Solution is Θ(n1.584...) (cf. Θ(n2) for school method)

IADS Lecture 10 Slide 12

Thanks for listening!
Enjoy Aris’s lectures, and see you again in Sem 2 for some
language processing and computability theory.

Reading for today’s lecture:
Roughgarden Chapter 4 (recommended)
CLRS Chapter 4, especially 4.5
KT Chapter 5 (many good examples, doesn’t explicitly state MT)

GTG 4.2 (relevant, again doesn’t explicitly state MT)

IADS Lecture 10 Slide 13

