Informatics 2 - Introduction to Algorithms and Data Structures

Tutorial 2: Analysis of Algorithms

1. In Lecture 2 we considered three algorithms (A, B, C) for computing $\operatorname{Expmod}(a, n, m)=$ $a^{n} \bmod m$, and mentioned how this operation can be used to test for 'probable primes'. For example:

$$
\operatorname{ProbablePrime}(n)=(\operatorname{Expmod}(2, n-1, n)==1)
$$

We can gain insight into the time complexity of this procedure by analysing the number of arithmetic operations performed ($+,-, \times, \operatorname{div}, \bmod)$.
(a) Give an asymptotic upper bound - i.e. O (some function of n) - for the number of arithmetic operations required to compute ProbablePrime(n) using Algorithm B for Expmod:

$$
\begin{aligned}
& \text { Expmod }(a, n, m) \text { : } \\
& b=1 \\
& \text { for } i=1 \text { to } n \\
& b=(b \times a) \bmod m \\
& \text { return } b
\end{aligned}
$$

(b) Do the same for Algorithm C:

$$
\begin{aligned}
& \text { Expmod }(a, n, m) \text { : } \\
& \text { if } n=0 \text { then return } 1 \\
& \text { else } \\
& d=\text { Expmod }(a,\lfloor n / 2\rfloor, m) \\
& \text { if } n \text { is even } \\
& \quad \text { return }(d \times d) \bmod m \\
& \text { else return }(d \times d \times a) \bmod m
\end{aligned}
$$

Give informal justifications for your answers. (We are not expecting rigorous proofs here, though you're welcome to think about what they'd look like.)
2. The sorting algorithm known as BubbleSort works by repeatedly sweeping through an array, swapping any pairs of adjacent elements that are out of order. Here is a very crude version of BubbleSort. (NB. This may be simpler than other versions you might have come across, so pay close attention to the details of how the loops are set up.)

```
BubbleSort (A):
    for i=1 to |A| - 1
    for j = 0 to |A| - 2
        if A[j]>A[j+1]
            swap A[j] and A[j+1]
```

(a) First, let's see why this algorithm works. Explain why after the first sweep through the array (i.e. after the completion of the j -loop when $\mathrm{i}=1$), the largest element will be in its correct place at position $n-1$, where $n=|\mathrm{A}|$. Develop this idea to show that after $n-1$ sweeps, the array will be fully sorted.
(b) What is the asymptotic worst-case number of comparisons performed by this algorithm for inputs of size n (as Θ (something))? What about the asymptotic best case?
(c) The above version of BubbleSort can be made more efficient in two ways. One of these might be suggested by your answer to part (a) above: perhaps we don't need to sweep through the whole of A each time? Another comes from noting that if we ever happen to complete a sweep of the array without doing any swaps, the array must be fully sorted and we can stop.
Write some pseudocode for a new version, BubbleSort2, that incorporates both these improvements. (It is this version, or something very close, that is most often referred to as 'BubbleSort'.)
(d) What are the asymptotic worst- and best-case runtimes for BubbleSort2? For what inputs do these worst and best cases arise?
(e) \star (Optional) A useful measure of the unsortedness of an array A is the number of pairs of indices $\mathrm{i}, \mathrm{j}<|\mathrm{A}|$ such that $\mathrm{i}<\mathrm{j}$ but $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{j}]$. (Such a pair i, j is often called an inversion.) For example, a fully sorted array has unsortedness 0 . A reverse-sorted array of size n has unsortedness $n(n-1) / 2$, since here every pair i, j with $\mathrm{i}<\mathrm{j}$ satisfies $\mathrm{A}[\mathrm{i}]>\mathrm{A}[\mathrm{j}]$.
Argue that the number of comparisons performed by BubbleSort2 on input A is at least the unsortedness of A.
3. \star The version of MergeSort given in lectures is rather wasteful on space, as it allocates a fresh array D for every merge performed. Give pseudocode for an alternative version of MergeSort that sorts a given array A of size n, returning the sorted result within A itself, and using another array B of size n as workspace, but not creating any other arrays.
[Here's one way to approach it: Write a function that sorts the portion of A from position m to $n-1$, by splitting this portion into four roughly equal parts, recursively sorting each of these, then merging the results with the help of B.]
Does your algorithm require any memory space beyond that used to store A and B? Give a Θ-estimate for the total space usage of your algorithm, informally justifying your answer.

