
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 2: Analysis of Algorithms

1. In Lecture 2 we considered three algorithms (A, B, C) for computingExpmod(a, n,m) =
an mod m, and mentioned how this operation can be used to test for ‘probable primes’.
For example:

ProbablePrime(n) = (Expmod(2, n− 1, n) == 1)

We can gain insight into the time complexity of this procedure by analysing the number
of arithmetic operations performed (+,−,×,div,mod).

(a) Give an asymptotic upper bound – i.e. O(some function of n) – for the number of
arithmetic operations required to compute ProbablePrime(n) using Algorithm
B for Expmod:

Expmod (a,n,m):
b=1
for i = 1 to n

b = (b × a) mod m
return b

(b) Do the same for Algorithm C:

Expmod (a,n,m):
if n=0 then return 1
else

d = Expmod (a,⌊n/2⌋,m)
if n is even

return (d × d) mod m
else return (d × d × a) mod m

Give informal justifications for your answers. (We are not expecting rigorous
proofs here, though you’re welcome to think about what they’d look like.)

2. The sorting algorithm known as BubbleSort works by repeatedly sweeping through
an array, swapping any pairs of adjacent elements that are out of order. Here is a
very crude version of BubbleSort. (NB. This may be simpler than other versions
you might have come across, so pay close attention to the details of how the loops are
set up.)

BubbleSort (A):
for i = 1 to |A| − 1

for j = 0 to |A| − 2
if A[j] > A[j+1]

swap A[j] and A[j+1]

1

(a) First, let’s see why this algorithm works. Explain why after the first sweep
through the array (i.e. after the completion of the j-loop when i=1), the largest
element will be in its correct place at position n−1, where n = |A|. Develop this
idea to show that after n− 1 sweeps, the array will be fully sorted.

(b) What is the asymptotic worst-case number of comparisons performed by this
algorithm for inputs of size n (as Θ(something))? What about the asymptotic
best case?

(c) The above version of BubbleSort can be made more efficient in two ways. One
of these might be suggested by your answer to part (a) above: perhaps we don’t
need to sweep through the whole of A each time? Another comes from noting
that if we ever happen to complete a sweep of the array without doing any swaps,
the array must be fully sorted and we can stop.

Write some pseudocode for a new version, BubbleSort2, that incorporates both
these improvements. (It is this version, or something very close, that is most often
referred to as ‘BubbleSort’.)

(d) What are the asymptotic worst- and best-case runtimes for BubbleSort2? For
what inputs do these worst and best cases arise?

(e) ⋆ (Optional) A useful measure of the unsortedness of an array A is the number
of pairs of indices i,j < |A| such that i < j but A[i] > A[j]. (Such a pair i, j is
often called an inversion.) For example, a fully sorted array has unsortedness
0. A reverse-sorted array of size n has unsortedness n(n− 1)/2, since here every
pair i,j with i<j satisfies A[i] > A[j].

Argue that the number of comparisons performed by BubbleSort2 on input A
is at least the unsortedness of A.

3. ⋆ The version ofMergeSort given in lectures is rather wasteful on space, as it allocates
a fresh array D for every merge performed. Give pseudocode for an alternative version
of MergeSort that sorts a given array A of size n, returning the sorted result within
A itself, and using another array B of size n as workspace, but not creating any other
arrays.

[Here’s one way to approach it: Write a function that sorts the portion of A from
position m to n−1, by splitting this portion into four roughly equal parts, recursively
sorting each of these, then merging the results with the help of B.]

Does your algorithm require any memory space beyond that used to store A and B?
Give a Θ-estimate for the total space usage of your algorithm, informally justifying
your answer.

2

