Extreme Computing
Assignment 1

1 Introduction

This is the first practical assignment for the Extreme Computing course 2023/24 (ungraded). You need to
use the Scala Collection API to solve problems you might encounter when working with collections. This
section will give you administrative information and help with solving the assignment. This is followed by
the actual tasks.

1.1 Administrative Information

Deadline There is not deadline for this assignment :)

Questions All questions should go on Piazza
https://piazza.com/class/1lmgiwvg3vljbec

Feel free to discuss general techniques amongst each other unless you would reveal an answer. If
your question / discussion reveals an answer, ask privately.

Marking The assignment is not graded :)

https://piazza.com/class/lmgiwvg3vlj5ec

2 Tasks

For the dataset you will use in this assignment, there is a imdb-small-data.zip file that can be accessed at:
https://amirsh.github.io/files/exc23/imdb-small-data.zip

You can copy the extracted tsv files to src/main/resources/imdb/ for local testing and debugging.

2.1 Internet Movie Database (IMDB)

This assignment will be on processing the IMDB dataset — we have chosen a subset for these tasks to en-
courage you to think about how to structure your solutions to use multiple input data collections, and
efficiently process structured text using Scala collections.

Please note that we have removed the first line of the tsv file, which contained the column names in the
original dataset. We have done this for your convenience, as in your code, you can assume all lines are data.
The four files used, including their structures, are detailed in Section 2.2.

Note that not all .tsv files are required for all questions. Consult the schema in Section 2.2 to ascertain
which one(s) you require for the task at hand. Be aware that skipVal (’\N’) may be present where fields
are denoted Option, meaning no data is present. You are expected to account for this possibility and ignore
those entries from your solutions.

https://amirsh.github.io/files/exc23/imdb-small-data.zip

2.2 IMDB Schema Reference

The following table defines the columns in each of the provided files from the IMDB dataset to aid you in
your solution design.

® Option[T] means either type T is present, or skipVal (‘\N’) otherwise

® List[T] means a comma-delimited list of type T is present, e.g. ‘dog, cat,bear’, where T

:= String

INDEX FIELD TYPE EXAMPLES/NOTES
name.basics.tsv
0 nconst String nmXXXXXXX — Unique person/crew ID
1 primaryName Option[String] -
2 birthYear Option[Int] -
3 deathYear Option[Int] -
4 primaryProfession Option[List[String]] ‘editor,manager’, ‘actor’, ‘actress’
5 knownForTitles Option[List[String]] ‘tconstl,tconst2,tconst3’
title.basics.tsv
0 tconst String ttXXXXXXX — Unique title ID
1 titleType Option[String] ‘tvMovie’, ‘short’, ‘movie’, ‘videoGame’
2 primaryTitle Option[String] -
3 originalTitle Option[String] -
4 isAdult Int -
5 startYear Option[Int] YYYY — Release year
6 endYear Option[Int] YYYY - End year, e.g. when a play ends.
7 runtimeMinutes Option[Int] -
8 genres Option[List[String]] ‘Documentary,Short,Sport’
title.crew.tsv
0 tconst String Joins title.basics.tconst
1 directors Option[List[String]] ‘nmXXXXXX1,nmXXXXXX2’ -Joinsnconst
2 writers Option[List[Stringl] ‘nmXXXXXX1,nmXXXXXX2’ -Joinsnconst
title.ratings.tsv
0 tconst String Joins title.basics.tconst
1 averageRating Float -
2 numVotes Int -

3 Tasks

Download imdb-scala-src.zip and it extract it somewhere on your machine. You have to complete the
missing implementations (specified by 7??) in src/main/scala/imdb/ImdbAnalysis.scala.

You are encouraged to look at the Scala API documentation while solving this exercise, which can be found
here:

https://www.scala-lang.org/api/2.12.15/index.html

Consult the schema in Section 2.2 when designing your solutions in order to extract the correct data.

Task 1

Calculate the average, minimum, and maximum runtime duration for all titles per movie genre.

Note that a title can have more than one genre, thus it should be considered for all of them. The results
should be kept in minutes and titles with 0 runtime duration are valid and should be accounted for in your
solution.

return type: List[(Float, Int, Int, String)]
avg_runtime:Float

min_runtime:Int

max_runtime:Int

genre:String

Task 2

Return the titles of the movies which were released between 1990 and 2018 (inclusive), have an average
rating of 7.5 or more, and have received 500000 votes or more.

For the titles use the primaryTitle field and account only for entries whose titleType is ‘movie’.

return type: List[String]
title:String

Task 3

Return the top rated movie of each genre for each decade between 1900 and 1999.

For the titles use the primaryTitle field and account only for entries whose titleType is ‘movie’. For
calculating the top rated movies use the averageRating field and for the release year use the startYear
field.

The output should be sorted by decade and then by genre. For the movies with the same rating and of
the same decade, print only the one with the title that comes first alphabetically. Each decade should be
represented with a single digit, starting with 0 corresponding to 1900-1909.

return type: List[(Int, String, String)]
decade:Int

genre:String

title:String

Task 4

<4 Task

< Task

< Task

<4 Task

https://www.scala-lang.org/api/2.12.15/index.html

In this task we are interested in all the crew names (primaryName) for whom there are at least two known-
for films released since the year 2010 up to and including the year 2021. You need to return the crew name
and the number of such films.

return type: List[(String, Int)]
crew _name:String
film_count:Int

	Introduction
	Administrative Information

	Tasks
	Internet Movie Database (IMDB)
	IMDB Schema Reference

	Tasks

