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• Worst case: 


• Best case: 
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Θ(n lg n)



A simple sorting algorithm



A simple sorting algorithm

• Selectsort (or Selectionsort)



A simple sorting algorithm

• Selectsort (or Selectionsort)

• “Scan” the array to find the maximum element.



A simple sorting algorithm

• Selectsort (or Selectionsort)

• “Scan” the array to find the maximum element.

• Put the maximum element at the end of the array.



A simple sorting algorithm

• Selectsort (or Selectionsort)

• “Scan” the array to find the maximum element.

• Put the maximum element at the end of the array.

• Repeat for the part of the array that has not been 
sorted. 
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Selectsort Example

162314 9 10 1487

1 2 3 4 5 6 7 8 9 10

• What is the worst-case running time of Selectsort?

• What is the best case-running time of Selectsort?

• Let’s try it on wooclap!
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Selectsort Running time

• Worst-case: Θ(n2)

• Average-case: Θ(n2)

• Best-case: Θ(n2)

• Why is this happening?

• For  iterations, we need  comparisons to find 
the maximum element. 

Ω(n) Ω(n)
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What if we could…

• …find the maximum element in  time?O(1)

• That would give us a sorting algorithm with  running 
time…

O(n)

• … which is in general not possible!
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What if we could…

• …find the maximum element in  time…O(1)

• … after we preprocess the array a little bit…

• … and after we process it again after each iteration …

• … without using too many comparisons/operations?
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Heapsort (very informally)

1. Preprocess the array to become a special array.

2. Find the maximum element of the special array in  
time and move it to the last position.

O(1)

3. Consider the remaining array and process it to become a 
special array again.

4. Repeat  Steps 2-4 for the remaining special array, until 
the remaining array has size 0. 



The Heap Data Structure
An almost complete binary tree. 


All levels completely filled, except 
possibly the last one, which is 
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1



The Heap Data Structure
An almost complete binary tree. 


All levels completely filled, except 
possibly the last one, which is 
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .


Attribute .heap-size, so we can access  
 .heap-size]


A[1 : n]

A
A[1 : A

A[1]

1

2 3

4 5 6 7

8 9 10



The Heap Data Structure
An almost complete binary tree. 


All levels completely filled, except 
possibly the last one, which is 
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .


Attribute .heap-size, so we can access  
 .heap-size]


A[1 : n]

A
A[1 : A

A[1]

Parent 

return  

(i)
⌊i/2⌋

Left 

  return  

(i)
2i

Right 

      return  

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10



The Heap Data Structure
An almost complete binary tree. 


All levels completely filled, except 
possibly the last one, which is 
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .


Attribute .heap-size, so we can access  
 .heap-size]


A[1 : n]

A
A[1 : A

A[1]

Parent 

return  

(i)
⌊i/2⌋

Left 

  return  

(i)
2i

Right 

      return  

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10



The Heap Data Structure
An almost complete binary tree. 


All levels completely filled, except 
possibly the last one, which is 
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .


Attribute .heap-size, so we can access  
 .heap-size]


A[1 : n]

A
A[1 : A

A[1]

Parent 

return  

(i)
⌊i/2⌋

Left 

  return  

(i)
2i

Right 

      return  

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10



The Heap Data Structure
An almost complete binary tree. 


All levels completely filled, except 
possibly the last one, which is 
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .


Attribute .heap-size, so we can access  
 .heap-size]


A[1 : n]

A
A[1 : A

A[1]

Parent 

return  

(i)
⌊i/2⌋

Left 

  return  

(i)
2i

Right 

      return  

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10



The Heap Data Structure
An almost complete binary tree. 


All levels completely filled, except 
possibly the last one, which is 
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .


Attribute .heap-size, so we can access  
 .heap-size]


A[1 : n]

A
A[1 : A

A[1]

Parent 

return  

(i)
⌊i/2⌋

Left 

  return  

(i)
2i

Right 

      return  

(i)
2i + 1

These can 
be done in 

 time.O(1)

1
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Height of a heap
16

14

8 7

10

9 3

2 4 1

height(i)

height  = # edges on the longest simple path to a leaf(i)

height  = height(root)(Tree)

The height of a heap on  nodes is 

(in particular, )

n Θ(lg n)
⌊lg n⌋



(Max) Heap Property

The value of a node is at most the value of its parent, i.e., 
                                Parent .A[ (i)] ≥ A[i]

16

14

8 7

10

9 3

2 4 1



(Max) Heap Property

The value of a node is at most the value of its parent, i.e., 
                                Parent .A[ (i)] ≥ A[i]

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10



(Max) Heap Property

The value of a node is at most the value of its parent, i.e., 
                                Parent .A[ (i)] ≥ A[i]
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2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

This will be our special array.
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Max-Heapify
3. Consider the remaining array and process it to become a     
heap again.

Max-Heapify .(A, i)

Precondition: Trees 
rooted at Left  and 
Right  are heaps.

(i)
(i)

Postcondition: The 
tree routed at  is a 
heap.

i

CLRS pp 165
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Max-Heapify running time
What is the cost of an 
execution of Max-Heapify?

All “standard” operations 
can be done in  time.O(1)

Plus the time needed for 
the recursive call of Max-
Heapify on the child of 
node .i

T(h) ≤ (h + 1) ⋅ O(1)
= O(h) = O(lg n)

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

T(h)

T(h − 1)

T(h) ≤ {T(h − 1) + O(1), if h ≥ 1
O(1) if h = 0
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(i)

i
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Build-Max-Heap 
Correctness

We will argue via a loop invariant:

At the start of each iteration of the for loop (lines 2-3), each node  is the 
root of a max-heap. 

i + 1, i + 2, …, n

Initialisation: Prior to the first iteration of the loop . In that case the nodes 
 are leaves, and hence trivially max-heaps.

i = ⌊n /2⌋
⌊n /2⌋, ⌊n /2⌋ + 1,…, n

 
Maintenance: 

Left  and Right  have higher indices than . By the loop invariant, they are roots of max-
heaps.

(i) (i) i

The precondition of Max-Heapify  is thus satisfied. By the postcondition,  will be the root 
of a max-heap. Furthermore, nodes  are still roots of max-heaps.

(i) i
i + 1, …, n

Termination: The loop obviously terminates, when  By the loop invariant, each node is 
the root of a max-heap, and so is the root. 

i = 0.
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Build-Max-Heap has running time .O(n lg n)



Heapsort



Heapsort
1. Preprocess the array to become a heap. 

      Build-Max-Heap(A, n)



Heapsort
1. Preprocess the array to become a heap. 

      Build-Max-Heap(A, n)

2. Find the maximum element of the heap in  time and move it 
to the last position. 
       exchange  with  (where initially ).

O(1)

A[1] A[i] i = n



Heapsort
1. Preprocess the array to become a heap. 

      Build-Max-Heap(A, n)

2. Find the maximum element of the heap in  time and move it 
to the last position. 
       exchange  with  (where initially ).

O(1)

A[1] A[i] i = n

3. Consider the remaining array and process it to become a heap 
again. 
      .heap-size = .heapsize -1 
      Max-Heapify

A A
(A,1)



Heapsort
1. Preprocess the array to become a heap. 

      Build-Max-Heap(A, n)

2. Find the maximum element of the heap in  time and move it 
to the last position. 
       exchange  with  (where initially ).

O(1)

A[1] A[i] i = n

3. Consider the remaining array and process it to become a heap 
again. 
      .heap-size = .heapsize -1 
      Max-Heapify

A A
(A,1)

4. Repeat  Steps 2-4 for the remaining special array, until the 
remaining array has size 0. 
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Easy bound: 


Max-Heapify has running time .


Max-Heapify is called  times.


Build-Max-Heap has running time .

O(lg n)

O(n)

O(n lg n)

Running time of Heapsort:

             Θ(n lg n)
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Build-Max-Heap Running 
Time

Easy bound: 

Max-Heapify has running time .O(lg n)

Max-Heapify is called  times.O(n)

Build-Max-Heap has running time .O(n lg n)

Is this really tight?
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Refined bound: 

For Max-Heapify, we actually proved that 

T(h) ≤ (h + 1) ⋅ O(1)
= O(h) = O(lg n)

In other words, there is a constant  such that  for 
sufficiently large .

c T(h) ≤ ch
h

Our cost depends on the height of the subtree we are 
considering!
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Refined bound:    


T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
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∞

∑
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straightforward
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There are at most  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∞

∑
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kxk =
x

(1 − x)2
,

 for  |x | < 1, with x = 1/2.



Heapsort Properties

• Invented by J.W.J. Williams in 1964 (the Heap too!)


• It is an in-place algorithm (no auxiliary array).


• It is not a stable algorithm (i.e., it does not maintain the 
relative order between equal keys). 


• Whether equal keys are allowed or not influences the 
best-case running time of the algorithm (think about it!).


• Next time: More about the heap - what else is it good for?


