
Introduction to Algorithms and
Data Structures

Heapsort

Sorting algorithms so far

Sorting algorithms so far
• Insertsort (or Insertionsort)

• Worst case:

• Best case:

Θ(n2)

Θ(n)

Sorting algorithms so far
• Insertsort (or Insertionsort)

• Worst case:

• Best case:

Θ(n2)

Θ(n)

• Mergesort

• Worst case:

• Best case:

Θ(n lg n)

Θ(n lg n)

A simple sorting algorithm

A simple sorting algorithm

• Selectsort (or Selectionsort)

A simple sorting algorithm

• Selectsort (or Selectionsort)

• “Scan” the array to find the maximum element.

A simple sorting algorithm

• Selectsort (or Selectionsort)

• “Scan” the array to find the maximum element.

• Put the maximum element at the end of the array.

A simple sorting algorithm

• Selectsort (or Selectionsort)

• “Scan” the array to find the maximum element.

• Put the maximum element at the end of the array.

• Repeat for the part of the array that has not been
sorted.

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 14 87

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 1487

1 2 3 4 5 6 7 8 9 10

Selectsort Example

162314 9 10 1487

1 2 3 4 5 6 7 8 9 10

• What is the worst-case running time of Selectsort?

Selectsort Example

162314 9 10 1487

1 2 3 4 5 6 7 8 9 10

• What is the worst-case running time of Selectsort?

• What is the best case-running time of Selectsort?

Selectsort Example

162314 9 10 1487

1 2 3 4 5 6 7 8 9 10

• What is the worst-case running time of Selectsort?

• What is the best case-running time of Selectsort?

• Let’s try it on wooclap!

Selectsort Running time

• Worst-case: Θ(n2)

• Average-case: Θ(n2)

• Best-case: Θ(n2)

• Why is this happening?

Selectsort Running time

• Worst-case: Θ(n2)

• Average-case: Θ(n2)

• Best-case: Θ(n2)

• Why is this happening?

• For iterations, we need comparisons to find
the maximum element.

Ω(n) Ω(n)

What if we could…

What if we could…

• …find the maximum element in time?O(1)

What if we could…

• …find the maximum element in time?O(1)

• That would give us a sorting algorithm with running
time…

O(n)

What if we could…

• …find the maximum element in time?O(1)

• That would give us a sorting algorithm with running
time…

O(n)

• … which is in general not possible!

What if we could…

What if we could…

• …find the maximum element in time…O(1)

What if we could…

• …find the maximum element in time…O(1)

• … after we preprocess the array a little bit…

What if we could…

• …find the maximum element in time…O(1)

• … after we preprocess the array a little bit…

• … and after we process it again after each iteration …

What if we could…

• …find the maximum element in time…O(1)

• … after we preprocess the array a little bit…

• … and after we process it again after each iteration …

• … without using too many comparisons/operations?

Heapsort (very informally)

Heapsort (very informally)

1. Preprocess the array to become a special array.

Heapsort (very informally)

1. Preprocess the array to become a special array.

2. Find the maximum element of the special array in
time and move it to the last position.

O(1)

Heapsort (very informally)

1. Preprocess the array to become a special array.

2. Find the maximum element of the special array in
time and move it to the last position.

O(1)

3. Consider the remaining array and process it to become a
special array again.

Heapsort (very informally)

1. Preprocess the array to become a special array.

2. Find the maximum element of the special array in
time and move it to the last position.

O(1)

3. Consider the remaining array and process it to become a
special array again.

4. Repeat Steps 2-4 for the remaining special array, until
the remaining array has size 0.

The Heap Data Structure
An almost complete binary tree.

All levels completely filled, except
possibly the last one, which is
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1

The Heap Data Structure
An almost complete binary tree.

All levels completely filled, except
possibly the last one, which is
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .

Attribute .heap-size, so we can access  
 .heap-size]

A[1 : n]

A
A[1 : A

A[1]

1

2 3

4 5 6 7

8 9 10

The Heap Data Structure
An almost complete binary tree.

All levels completely filled, except
possibly the last one, which is
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .

Attribute .heap-size, so we can access  
 .heap-size]

A[1 : n]

A
A[1 : A

A[1]

Parent

return

(i)
⌊i/2⌋

Left

 return

(i)
2i

Right

 return

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10

The Heap Data Structure
An almost complete binary tree.

All levels completely filled, except
possibly the last one, which is
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .

Attribute .heap-size, so we can access  
 .heap-size]

A[1 : n]

A
A[1 : A

A[1]

Parent

return

(i)
⌊i/2⌋

Left

 return

(i)
2i

Right

 return

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10

The Heap Data Structure
An almost complete binary tree.

All levels completely filled, except
possibly the last one, which is
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .

Attribute .heap-size, so we can access  
 .heap-size]

A[1 : n]

A
A[1 : A

A[1]

Parent

return

(i)
⌊i/2⌋

Left

 return

(i)
2i

Right

 return

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10

The Heap Data Structure
An almost complete binary tree.

All levels completely filled, except
possibly the last one, which is
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .

Attribute .heap-size, so we can access  
 .heap-size]

A[1 : n]

A
A[1 : A

A[1]

Parent

return

(i)
⌊i/2⌋

Left

 return

(i)
2i

Right

 return

(i)
2i + 1

1

2 3

4 5 6 7

8 9 10

The Heap Data Structure
An almost complete binary tree.

All levels completely filled, except
possibly the last one, which is
filled from the left to the right.

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

Implemented via an array .

Attribute .heap-size, so we can access  
 .heap-size]

A[1 : n]

A
A[1 : A

A[1]

Parent

return

(i)
⌊i/2⌋

Left

 return

(i)
2i

Right

 return

(i)
2i + 1

These can 
be done in 

 time.O(1)

1

2 3

4 5 6 7

8 9 10

Height of a binary tree
16

14

8 7

10

9 3

2 4 1

height(i)

height = # edges on the longest simple path to a leaf(i)

height = height(root)(T)

Height of a heap
16

14

8 7

10

9 3

2 4 1

height(i)

height = # edges on the longest simple path to a leaf(i)

height = height(root)(Tree)

Height of a heap
16

14

8 7

10

9 3

2 4 1

height(i)

height = # edges on the longest simple path to a leaf(i)

height = height(root)(Tree)

The height of a heap on nodes is

(in particular,)

n Θ(lg n)
⌊lg n⌋

(Max) Heap Property

The value of a node is at most the value of its parent, i.e., 
 Parent .A[(i)] ≥ A[i]

16

14

8 7

10

9 3

2 4 1

(Max) Heap Property

The value of a node is at most the value of its parent, i.e., 
 Parent .A[(i)] ≥ A[i]

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

(Max) Heap Property

The value of a node is at most the value of its parent, i.e., 
 Parent .A[(i)] ≥ A[i]

16

14

8 7

10

9 3

2 4 1 78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

This will be our special array.

Heapsort (a bit less
informally)

Heapsort (a bit less
informally)

1. Preprocess the array to become a heap.

Heapsort (a bit less
informally)

1. Preprocess the array to become a heap.

2. Find the maximum element of the heap in time and
move it to the last position (how?)

O(1)

Heapsort (a bit less
informally)

1. Preprocess the array to become a heap.

2. Find the maximum element of the heap in time and
move it to the last position (how?)

O(1)

3. Consider the remaining array and process it to become a
heap again.

Heapsort (a bit less
informally)

1. Preprocess the array to become a heap.

2. Find the maximum element of the heap in time and
move it to the last position (how?)

O(1)

3. Consider the remaining array and process it to become a
heap again.

4. Repeat Steps 2-4 for the remaining special array, until
the remaining array has size 0.

Max-Heapify

Max-Heapify
3. Consider the remaining array and process it to become a
heap again.

Max-Heapify
3. Consider the remaining array and process it to become a
heap again.

Max-Heapify .(A, i)

Max-Heapify
3. Consider the remaining array and process it to become a
heap again.

Max-Heapify .(A, i)

Precondition: Trees
rooted at Left and
Right are heaps.

(i)
(i)

Max-Heapify
3. Consider the remaining array and process it to become a
heap again.

Max-Heapify .(A, i)

Precondition: Trees
rooted at Left and
Right are heaps.

(i)
(i)

Postcondition: The
tree routed at is a
heap.

i

Max-Heapify
3. Consider the remaining array and process it to become a
heap again.

Max-Heapify .(A, i)

Precondition: Trees
rooted at Left and
Right are heaps.

(i)
(i)

Postcondition: The
tree routed at is a
heap.

i

CLRS pp 165

Max-Heapify
16

8

14 7

10

9 3

2

4

1

1

2 3

4 5 6 7

8 9 10

Max-Heapify
16

8

14 7

10

9 3

2

4

1
i = 2, A[i] = 4

1

2 3

4 5 6 7

8 9 10

Max-Heapify
16

8

14 7

10

9 3

2

4

1

ℓ

i = 2, A[i] = 4

1

2 3

4 5 6 7

8 9 10

Max-Heapify
16

8

14 7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

1

2 3

4 5 6 7

8 9 10

Max-Heapify
16

8

14 7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

true

1

2 3

4 5 6 7

8 9 10

Max-Heapify
16

8

14 7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

true
largest = 4

1

2 3

4 5 6 7

8 9 10

Max-Heapify
16

8

14 7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

true
largest = 4

1

2 3

4 5 6 7

8 9 10

false

Max-Heapify
16

8

14 7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

true
largest = 4

1

2 3

4 5 6 7

8 9 10

false

true

Max-Heapify
16

8

14 7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

true
largest = 4

1

2 3

4 5 6 7

8 9 10

false

true

Max-Heapify
16

8

14

7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

true
largest = 4

1

2 3

4 5 6 7

8 9 10

false

true

Max-Heapify
16

8

14

7

10

9 3

2

4

1

ℓ r

i = 2, A[i] = 4

true
largest = 4

1

2 3

4 5 6 7

8 9 10

false

true

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

1

2 3

4 5 6 7

8 9 10

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1
i = 4, A[i] = 4

1

2 3

4 5 6 7

8 9 10

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

ℓ
i = 4, A[i] = 4

1

2 3

4 5 6 7

8 9 10

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

ℓ r
i = 4, A[i] = 4

1

2 3

4 5 6 7

8 9 10

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

ℓ r
i = 4, A[i] = 4

false

1

2 3

4 5 6 7

8 9 10

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

ℓ r
i = 4, A[i] = 4

false

1

2 3

4 5 6 7

8 9 10

true

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

ℓ r
i = 4, A[i] = 4

false

largest = 9

1

2 3

4 5 6 7

8 9 10

true

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

ℓ r
i = 4, A[i] = 4

false

largest = 9

1

2 3

4 5 6 7

8 9 10

true

true

Max-Heapify (cont)
16

8

14

7

10

9 3

2

4

1

ℓ r
i = 4, A[i] = 4

false

largest = 9

1

2 3

4 5 6 7

8 9 10

true

true

Max-Heapify (cont)
16

8

14

7

10

9 3

2 4 1

ℓ r
i = 4, A[i] = 4

false

largest = 9

1

2 3

4 5 6 7

8 9 10

true

true

Max-Heapify (cont)
16

8

14

7

10

9 3

2 4 1

ℓ r
i = 4, A[i] = 4

false

largest = 9

1

2 3

4 5 6 7

8 9 10

true

trueOur tree is now a max-heap!

Max-Heapify running time

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

O(1)
O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

All “standard” operations
can be done in time.O(1)

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

All “standard” operations
can be done in time.O(1)

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

All “standard” operations
can be done in time.O(1)

Plus the time needed for
the recursive call of Max-
Heapify on the child of
node .i

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

All “standard” operations
can be done in time.O(1)

Plus the time needed for
the recursive call of Max-
Heapify on the child of
node .i

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

T(h)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

All “standard” operations
can be done in time.O(1)

Plus the time needed for
the recursive call of Max-
Heapify on the child of
node .i

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

T(h)

T(h − 1)

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

All “standard” operations
can be done in time.O(1)

Plus the time needed for
the recursive call of Max-
Heapify on the child of
node .i

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

T(h)

T(h − 1)

T(h) ≤ {T(h − 1) + O(1), if h ≥ 1
O(1) if h = 0

Max-Heapify running time
What is the cost of an
execution of Max-Heapify?

All “standard” operations
can be done in time.O(1)

Plus the time needed for
the recursive call of Max-
Heapify on the child of
node .i

T(h) ≤ (h + 1) ⋅ O(1)
= O(h) = O(lg n)

O(1)
O(1)

O(1)
O(1)
O(1)

O(1)
O(1)

O(1)
O(1)

T(h)

T(h − 1)

T(h) ≤ {T(h − 1) + O(1), if h ≥ 1
O(1) if h = 0

Build-Max-Heap
1. Preprocess the array to become a heap.

Build-Max-Heap
1. Preprocess the array to become a heap.

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Where do we start?

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Where do we start?

Can we start here?

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Where do we start?

Can we start here?
Can we start here?

Max-Heapify

Max-Heapify .

Precondition: Trees
rooted at Left and
Right are heaps.

Postcondition: The
tree routed at is a
heap.

(A, i)

(i)
(i)

i

CLRS pp 165

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Where do we start?

Can we start here?
Can we start here?

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Where do we start?

Can we start here?
Can we start here?

Can we start here?

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Idea: Apply Max-Heapify repeatedly until the tree becomes
a heap.

Where do we start?

Can we start here?
Can we start here?

Can we start here?

Leaves are (trivially) heaps!

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Observation: The elements of the subarray
 are leaves. A[⌊n/2⌋ + 1 : n]

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Observation: The elements of the subarray
 are leaves. A[⌊n/2⌋ + 1 : n]

Build-Max-Heap

4

1

2 16

3

9 10

14 8 7 162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Observation: The elements of the subarray
 are leaves. A[⌊n/2⌋ + 1 : n]

We can start here

Build-Max-Heap
4

1

2 16

3

9 10

14 8 7

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2 16

3

9 10

14 8 7

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2 16

3

9 10

14 8 7

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2 16

3

9 10

14 8 7

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2 16

3

9 10

14 8 7

162314 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2

16

3

9 1014

8 7

16 2314 9 1014 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2

16

3

9 1014

8 7

16 2314 9 1014 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2

16

3

9 1014

8 7

16 2314 9 1014 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2

16 39

10

14

8 7

16 2314 910 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2

16 39

10

14

8 7

16 2314 910 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

1

2

16

39

10

14

8 7

16 2314 910 14 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

12

16

39

10

14

8

7

16 23 14 910 14 87

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
4

12

16

39

10

14

8

7

16 23 14 910 14 87

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap

4

12

16

39

10

14

8

7

16 23 14 910 14 87

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap

4

12

16

39

1014

8

7

16 23 14 91014 87

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap

4 12

16

39

1014

8 7

16 23 1491014 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap

4 12

16

39

1014

8 7

16 23 1491014 8 7

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

CLRS pp 167

Build-Max-Heap
Correctness

Build-Max-Heap
Correctness

We will argue via a loop invariant:

Build-Max-Heap
Correctness

We will argue via a loop invariant:

At the start of each iteration of the for loop (lines 2-3), each node is the
root of a max-heap.

i + 1, i + 2, …, n

Build-Max-Heap
Correctness

We will argue via a loop invariant:

At the start of each iteration of the for loop (lines 2-3), each node is the
root of a max-heap.

i + 1, i + 2, …, n

Initialisation: Prior to the first iteration of the loop . In that case the nodes
 are leaves, and hence trivially max-heaps.

i = ⌊n /2⌋
⌊n /2⌋, ⌊n /2⌋ + 1,…, n

Build-Max-Heap
Correctness

We will argue via a loop invariant:

At the start of each iteration of the for loop (lines 2-3), each node is the
root of a max-heap.

i + 1, i + 2, …, n

Initialisation: Prior to the first iteration of the loop . In that case the nodes
 are leaves, and hence trivially max-heaps.

i = ⌊n /2⌋
⌊n /2⌋, ⌊n /2⌋ + 1,…, n

 
Maintenance:

Build-Max-Heap
Correctness

We will argue via a loop invariant:

At the start of each iteration of the for loop (lines 2-3), each node is the
root of a max-heap.

i + 1, i + 2, …, n

Initialisation: Prior to the first iteration of the loop . In that case the nodes
 are leaves, and hence trivially max-heaps.

i = ⌊n /2⌋
⌊n /2⌋, ⌊n /2⌋ + 1,…, n

 
Maintenance:

Left and Right have higher indices than . By the loop invariant, they are roots of max-
heaps.

(i) (i) i

Build-Max-Heap
Correctness

We will argue via a loop invariant:

At the start of each iteration of the for loop (lines 2-3), each node is the
root of a max-heap.

i + 1, i + 2, …, n

Initialisation: Prior to the first iteration of the loop . In that case the nodes
 are leaves, and hence trivially max-heaps.

i = ⌊n /2⌋
⌊n /2⌋, ⌊n /2⌋ + 1,…, n

 
Maintenance:

Left and Right have higher indices than . By the loop invariant, they are roots of max-
heaps.

(i) (i) i

The precondition of Max-Heapify is thus satisfied. By the postcondition, will be the root
of a max-heap. Furthermore, nodes are still roots of max-heaps.

(i) i
i + 1, …, n

Build-Max-Heap
Correctness

We will argue via a loop invariant:

At the start of each iteration of the for loop (lines 2-3), each node is the
root of a max-heap.

i + 1, i + 2, …, n

Initialisation: Prior to the first iteration of the loop . In that case the nodes
 are leaves, and hence trivially max-heaps.

i = ⌊n /2⌋
⌊n /2⌋, ⌊n /2⌋ + 1,…, n

 
Maintenance:

Left and Right have higher indices than . By the loop invariant, they are roots of max-
heaps.

(i) (i) i

The precondition of Max-Heapify is thus satisfied. By the postcondition, will be the root
of a max-heap. Furthermore, nodes are still roots of max-heaps.

(i) i
i + 1, …, n

Termination: The loop obviously terminates, when By the loop invariant, each node is
the root of a max-heap, and so is the root.

i = 0.

Build-Max-Heap Running
Time

Build-Max-Heap Running
Time

Easy bound:

Build-Max-Heap Running
Time

Easy bound:

Max-Heapify has running time .O(lg n)

Build-Max-Heap Running
Time

Easy bound:

Max-Heapify has running time .O(lg n)

Max-Heapify is called times.O(n)

Build-Max-Heap Running
Time

Easy bound:

Max-Heapify has running time .O(lg n)

Max-Heapify is called times.O(n)

Build-Max-Heap has running time .O(n lg n)

Heapsort

Heapsort
1. Preprocess the array to become a heap. 

 Build-Max-Heap(A, n)

Heapsort
1. Preprocess the array to become a heap. 

 Build-Max-Heap(A, n)

2. Find the maximum element of the heap in time and move it
to the last position. 
 exchange with (where initially).

O(1)

A[1] A[i] i = n

Heapsort
1. Preprocess the array to become a heap. 

 Build-Max-Heap(A, n)

2. Find the maximum element of the heap in time and move it
to the last position. 
 exchange with (where initially).

O(1)

A[1] A[i] i = n

3. Consider the remaining array and process it to become a heap
again. 
 .heap-size = .heapsize -1 
 Max-Heapify

A A
(A,1)

Heapsort
1. Preprocess the array to become a heap. 

 Build-Max-Heap(A, n)

2. Find the maximum element of the heap in time and move it
to the last position. 
 exchange with (where initially).

O(1)

A[1] A[i] i = n

3. Consider the remaining array and process it to become a heap
again. 
 .heap-size = .heapsize -1 
 Max-Heapify

A A
(A,1)

4. Repeat Steps 2-4 for the remaining special array, until the
remaining array has size 0.

Heapsort

CLRS pp 170

16

14

8 7

10

9 3

2 4 1

78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Heapsort

CLRS pp 170

16

14

8 7

10

9 3

2 4 1

78101416 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Heapsort

CLRS pp 170

16

14

8 7

10

9 3

2 4 1

781014 169 3 2 41

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Heapsort

CLRS pp 170

16

14

8 7

10

9 3

2 4

1

781014 169 3 2 41

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9 10

Heapsort

CLRS pp 170

16

14

8 7

10

9 3

2 4

1

781014 169 3 2 41

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9

Heapsort

CLRS pp 170

16

14

8 7

10

9 3

2 4

1

781014 169 3 2 41

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9

Heapsort

CLRS pp 170

14

4 7

10

9 3

2 1

8

74108 169 3 2 114

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9

Heapsort

CLRS pp 170

14

4 7

10

9 3

2 1

8

74108 169 3 2 114

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9

Heapsort

CLRS pp 170

14

4 7

10

9 3

2 1

8

74108 169 3 21 14

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9

Heapsort

CLRS pp 170

14

4 7

10

9 3

2

1

8

74108 169 3 21 14

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8 9

Heapsort

CLRS pp 170

14

4 7

10

9 3

2

1

8

74108 169 3 21 14

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8

Heapsort

CLRS pp 170

14

4 7

10

9 3

2

1

8

74108 169 3 21 14

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8

Heapsort

CLRS pp 170

14

4 7

10

9 3

2

1

8

74108 169 3 21 14

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6 7

8
Full execution: CLRS pp 171

Heapsort Running Time

CLRS pp 170

Heapsort Running Time

CLRS pp 170

Easy bound:

Max-Heapify has running time .

Max-Heapify is called times.

Build-Max-Heap has running time .

O(lg n)

O(n)

O(n lg n)

Heapsort Running Time

CLRS pp 170

Easy bound:

Max-Heapify has running time .

Max-Heapify is called times.

Build-Max-Heap has running time .

O(lg n)

O(n)

O(n lg n)

Running time of Heapsort:

Heapsort Running Time

CLRS pp 170

Easy bound:

Max-Heapify has running time .

Max-Heapify is called times.

Build-Max-Heap has running time .

O(lg n)

O(n)

O(n lg n)

Running time of Heapsort:

 Θ(n lg n)

Build-Max-Heap Running
Time

Easy bound:

Max-Heapify has running time .O(lg n)

Max-Heapify is called times.O(n)

Build-Max-Heap has running time .O(n lg n)

Build-Max-Heap Running
Time

Easy bound:

Max-Heapify has running time .O(lg n)

Max-Heapify is called times.O(n)

Build-Max-Heap has running time .O(n lg n)

Is this really tight?

Build-Max-Heap Running
Time, better analysis

Refined bound:

Build-Max-Heap Running
Time, better analysis

Refined bound:

For Max-Heapify, we actually proved that

Build-Max-Heap Running
Time, better analysis

Refined bound:

For Max-Heapify, we actually proved that

T(h) ≤ (h + 1) ⋅ O(1)
= O(h) = O(lg n)

Build-Max-Heap Running
Time, better analysis

Refined bound:

For Max-Heapify, we actually proved that

T(h) ≤ (h + 1) ⋅ O(1)
= O(h) = O(lg n)

In other words, there is a constant such that for
sufficiently large .

c T(h) ≤ ch
h

Build-Max-Heap Running
Time, better analysis

Refined bound:

For Max-Heapify, we actually proved that

T(h) ≤ (h + 1) ⋅ O(1)
= O(h) = O(lg n)

In other words, there is a constant such that for
sufficiently large .

c T(h) ≤ ch
h

Our cost depends on the height of the subtree we are
considering!

Build-Max-Heap Running
Time, better analysis

Refined bound:

T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
h=0

⌈ n
2h+1 ⌉ch

≤
⌊lg n⌋

∑
h=0

n
2h

ch

≤ cn
∞

∑
h=0

h
2h

≤ cn ⋅
1/2

(1 − 1/2)2

= O(n)

Build-Max-Heap Running
Time, better analysis

Refined bound:

T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
h=0

⌈ n
2h+1 ⌉ch

≤
⌊lg n⌋

∑
h=0

n
2h

ch

≤ cn
∞

∑
h=0

h
2h

≤ cn ⋅
1/2

(1 − 1/2)2

= O(n)

straightforward

Build-Max-Heap Running
Time, better analysis

Refined bound:

T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
h=0

⌈ n
2h+1 ⌉ch

≤
⌊lg n⌋

∑
h=0

n
2h

ch

≤ cn
∞

∑
h=0

h
2h

≤ cn ⋅
1/2

(1 − 1/2)2

= O(n)

straightforward

⌈n /2h+1⌉ ≤ n /2h

Build-Max-Heap Running
Time, better analysis

Refined bound:

T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
h=0

⌈ n
2h+1 ⌉ch

≤
⌊lg n⌋

∑
h=0

n
2h

ch

≤ cn
∞

∑
h=0

h
2h

≤ cn ⋅
1/2

(1 − 1/2)2

= O(n)

straightforward

⌈n /2h+1⌉ ≤ n /2h

Build-Max-Heap Running
Time, better analysis

Refined bound:

T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
h=0

⌈ n
2h+1 ⌉ch

≤
⌊lg n⌋

∑
h=0

n
2h

ch

≤ cn
∞

∑
h=0

h
2h

≤ cn ⋅
1/2

(1 − 1/2)2

= O(n)

straightforward

height(heap) = ⌊lg n⌋

⌈n /2h+1⌉ ≤ n /2h

Build-Max-Heap Running
Time, better analysis

Refined bound:

T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
h=0

⌈ n
2h+1 ⌉ch

≤
⌊lg n⌋

∑
h=0

n
2h

ch

≤ cn
∞

∑
h=0

h
2h

≤ cn ⋅
1/2

(1 − 1/2)2

= O(n)

straightforward

height(heap) = ⌊lg n⌋
There are at most  

nodes of any height
⌈n /2h+1⌉

h

⌈n /2h+1⌉ ≤ n /2h

Build-Max-Heap Running
Time, better analysis

Refined bound:

T(Build-Max-Heap(A, n)) ≤
⌊lg n⌋

∑
h=0

⌈ n
2h+1 ⌉ch

≤
⌊lg n⌋

∑
h=0

n
2h

ch

≤ cn
∞

∑
h=0

h
2h

≤ cn ⋅
1/2

(1 − 1/2)2

= O(n)

straightforward

height(heap) = ⌊lg n⌋
There are at most  

nodes of any height
⌈n /2h+1⌉

h

⌈n /2h+1⌉ ≤ n /2h

∞

∑
k=0

kxk =
x

(1 − x)2
,

 for |x | < 1, with x = 1/2.

Heapsort Properties

• Invented by J.W.J. Williams in 1964 (the Heap too!)

• It is an in-place algorithm (no auxiliary array).

• It is not a stable algorithm (i.e., it does not maintain the
relative order between equal keys).

• Whether equal keys are allowed or not influences the
best-case running time of the algorithm (think about it!).

• Next time: More about the heap - what else is it good for?

