Informatics 2 — Introduction to
Algorithms and Data Structures

Tutorial 1: Asymptotic Notation
SOLUTIONS

1. For each of the following five functions g, identify a function f; from the
list such that g = O(f;). Justify your answers as clearly as you can.

(a) g(n) =n(n+1)(2n+1)/6.

Growth rate is ©(n?). An adequate justification (which can be made
fully rigorous) is that when this is expanded as a polynomial, the
highest-degree term is n3/3 — and as we saw in lectures, quadratic
and lower-order terms are o(n®). This implies that ©(n?®) is the
essential growth rate.

Note, incidentally, that this is the formula for $7_, k2.
(b) g(n) =n div 57 (integer division, rounding down,).

This is ©(n). Indeed, g(n) differs from n/57 (exact division) by at
most 1. More rigorously, we can see that once n > 57, we’ll have
g(n) > n/114 (for instance), so that g(n) is sandwiched between
n/114 and n/57.

(¢) g(n) =n mod 57 + 1.

This is O(1), because we have 1 < g(n) < 57 for all n. (Note that
without the ‘4+1’, it would be O(1) but not §2(1) (i.e. not eventually
bounded below by a positive constant), because n mod 57 would be
zero infinitely often.)

(d) g(n) =nlgn+(Ign)3+e=". You may assume here thatlgn = o(\/n).

This one shows the usefulness of asymptotic notation for cleaning up
a messy formula. We claim g(n) = O(nlgn), as this is the dominant
term. The term e~ can clearly be ignored as it is always < 1.
And from lgn = o(y/n) it follows easily that (Ign)? = o(n), whence
(lgn)® = o(nlgn), so the second term also becomes negligible relative
to nlgn. Again, this can all be made completely rigorous with a little
effort.

(e) x Where would the factorial function fit into this picture? Does n!
have the same growth rate as one of the above functions f; ¢ Or does
it fall between f; and f;y1 for some i?

The growth rate of n! falls strictly between that of 2 and 22" .

To see that 2" = o(n!), let’s look at the ratio n!/2", which is

I1X2X3x---Xn
2X2X2X-- X2

It’s easy to see that this is at least n/2 (once n > 2), which tends to
infinity as n does.

To see that n! = 0(22"), we can note that for n > 4,
nl < n" < 2M)" = ot < 9

Show directly from the definition that 100n® = o(n*).

Given ¢ > 0, we need to pick a suitable N. We can arrive at this by
working backwards: what needs to be true in order that 100n? < cn*?
Cancelling n® from both sides, this is equivalent to 100 < cn (for
positive n), which in turn is equivalent to n > 100/c.

Having gone through something like this in rough working, we’re now
in a position to present the following polished solution, in which we
appear to pull a rabbit from a hat:

Given ¢ > 0, consider any N > 100/c. Then for any n > N we have
100n® = ¢(100/¢)n® < cn.n® = cn’.

[The ‘polished solution’ is formally all we need to say to answer the
question, but the ‘rough working’ is perhaps more illuminating.|

Show that if r,s are any real numbers with 0 < r < s, then n" =
o(n®).

Here we can argue “informally’: if we take

S
T

lim = = lim n®",

n—oo N’ n—o0
it is easy to see that this is co, since s > r. To argue formally, again
we can work backwards: we need an N large enough such that for
every ¢, and every n > N, n” < c¢-n® holds. If we solve for n, it
follows that n > (1/¢)/(5=") ie., taking N > (1/¢)'/ =) suffices.
Note that since s > r, the ratio 1/(s — r) in the exponent is always
well-defined.

[Tip: Looking at how the ratio of the two functions behaves is often
a good way forward.]

Writing ‘g’ for log to base 2 and ‘In’ for log to base e, show that
Inn = O(lgn). Deduce that lgn = ©(lnn).

We will make use of the well-known formula
log,z = (log;, a)(log,)

to change the base of the logarithm. Applying the formula, we obtain
that lgz = (Ige)- (Inx). To show that Inn = O(lgn), we need to find
a constant C' > 0 and an N such that for every n > N, Inn < C-lgn.

Choosing C' = 1/lg e works in this case. To show that lgn = O(Ilnn),
we need to find constants ¢1,co > 0 and N such that for every n > N,
we have ¢ Inn <lgn < coInn. For ¢y, we can take co = 1/C = lge.
For ¢;, we can again take ¢; = 1/C = lge. Here lge is an absolute
constant, so this gives lgn = O(Inn).

(d) Is it likewise true that 2™ = ©(e™)?

Most certainly not! Here it suffices to argue “informally”. Indeed, if

we look at
e e\"”
lim — = lim (f) ,
n—oo 2N n—oo \ 2

this goes to oo, and hence it will surpass any given C' > 0 as n
increases (specifically, once n > InC/In(e/2)).

3. Recall the methods you learned at school for addition, long multiplication
and long division. For each of these, informally analyse the asymptotic
worst-case runtime on inputs of at most n decimal digits. You may take
‘time’ to mean the number of times you have to write a symbol on the

page.

In this question, we shall satisfy ourselves with an informal, non-rigorous
style of analysis.

For numbers of at most n digits, addition takes ‘time’ ©(n). We have
to write the at most n + 1 digits of the answer, plus (at worst) a similar
number of carry digits.

For long multiplication of two n-digit numbers, we in effect construct a
list of n numbers each of at most n + 1 digits, then add them. Not hard
to convince oneself that all of this takes time O(n?).

For integer long division (e.g. resulting in a div b and a mod b). The
division will proceed in < n ‘rounds’, in each of which we perform a
subtraction of size < n + 1. (The necessary values of b,2b,...,9b can be
precomputed at the start, taking just time O(n).) So the overall runtime
is clearly O(n?). To see that the worst-case runtime is also (n?), consider
the situation of dividing an n-digit a by an n/2-digit b. Clearly this can
require around n/2 subtractions of size n/2.

