Informatics 2 - Introduction to Algorithms and Data Structures

Tutorial 1: Asymptotic Notation SOLUTIONS

1. For each of the following five functions g, identify a function f_{i} from the list such that $g=\Theta\left(f_{i}\right)$. Justify your answers as clearly as you can.
(a) $g(n)=n(n+1)(2 n+1) / 6$.

Growth rate is $\Theta\left(n^{3}\right)$. An adequate justification (which can be made fully rigorous) is that when this is expanded as a polynomial, the highest-degree term is $n^{3} / 3$ - and as we saw in lectures, quadratic and lower-order terms are $o\left(n^{3}\right)$. This implies that $\Theta\left(n^{3}\right)$ is the essential growth rate.
Note, incidentally, that this is the formula for $\Sigma_{k=1}^{n} k^{2}$.
(b) $g(n)=n \operatorname{div} 57$ (integer division, rounding down).

This is $\Theta(n)$. Indeed, $g(n)$ differs from $n / 57$ (exact division) by at most 1. More rigorously, we can see that once $n \geq 57$, we'll have $g(n)>n / 114$ (for instance), so that $g(n)$ is sandwiched between $n / 114$ and $n / 57$.
(c) $g(n)=n \bmod 57+1$.

This is $O(1)$, because we have $1 \leq g(n) \leq 57$ for all n. (Note that without the ' +1 ', it would be $O(1)$ but not $\Omega(1)$ (i.e. not eventually bounded below by a positive constant), because $n \bmod 57$ would be zero infinitely often.)
(d) $g(n)=n \lg n+(\lg n)^{3}+e^{-n}$. You may assume here that $\lg n=o(\sqrt{n})$.

This one shows the usefulness of asymptotic notation for cleaning up a messy formula. We claim $g(n)=\Theta(n \lg n)$, as this is the dominant term. The term e^{-n} can clearly be ignored as it is always ≤ 1. And from $\lg n=o(\sqrt{n})$ it follows easily that $(\lg n)^{2}=o(n)$, whence $(\lg n)^{3}=o(n \lg n)$, so the second term also becomes negligible relative to $n \lg n$. Again, this can all be made completely rigorous with a little effort.
(e) \star Where would the factorial function fit into this picture? Does n! have the same growth rate as one of the above functions f_{i} ? Or does it fall between f_{i} and f_{i+1} for some i ?
The growth rate of $n!$ falls strictly between that of 2^{n} and $2^{2^{n}}$.

To see that $2^{n}=o(n!)$, let's look at the ratio $n!/ 2^{n}$, which is

$$
\frac{1 \times 2 \times 3 \times \cdots \times n}{2 \times 2 \times 2 \times \cdots \times 2}
$$

It's easy to see that this is at least $n / 2$ (once $n \geq 2$), which tends to infinity as n does.
To see that $n!=o\left(2^{2^{n}}\right)$, we can note that for $n \geq 4$,

$$
n!<n^{n}<\left(2^{n}\right)^{n}=2^{n^{2}} \leq 2^{2^{n}}
$$

2. (a) Show directly from the definition that $100 n^{3}=o\left(n^{4}\right)$.

Given $c>0$, we need to pick a suitable N. We can arrive at this by working backwards: what needs to be true in order that $100 n^{3}<c n^{4}$? Cancelling n^{3} from both sides, this is equivalent to $100<c n$ (for positive n), which in turn is equivalent to $n>100 / c$.
Having gone through something like this in rough working, we're now in a position to present the following polished solution, in which we appear to pull a rabbit from a hat:
Given $c>0$, consider any $N>100 / c$. Then for any $n \geq N$ we have

$$
100 n^{3}=c(100 / c) n^{3}<c . n . n^{3}=c n^{4} .
$$

[The 'polished solution' is formally all we need to say to answer the question, but the 'rough working' is perhaps more illuminating.]
(b) Show that if r, s are any real numbers with $0 \leq r<s$, then $n^{r}=$ $o\left(n^{s}\right)$.
Here we can argue "informally': if we take

$$
\lim _{n \rightarrow \infty} \frac{n^{s}}{n^{r}}=\lim _{n \rightarrow \infty} n^{s-r}
$$

it is easy to see that this is ∞, since $s>r$. To argue formally, again we can work backwards: we need an N large enough such that for every c, and every $n \geq N, n^{r}<c \cdot n^{s}$ holds. If we solve for n, it follows that $n>(1 / c)^{1 /(s-r)}$, i.e., taking $N>(1 / c)^{1 /(s-r)}$ suffices. Note that since $s>r$, the ratio $1 /(s-r)$ in the exponent is always well-defined.
[Tip: Looking at how the ratio of the two functions behaves is often a good way forward.]
(c) Writing ' g ' for log to base 2 and \ln ' for \log to base e, show that $\ln n=O(\lg n)$. Deduce that $\lg n=\Theta(\ln n)$.

We will make use of the well-known formula

$$
\log _{b} x=\left(\log _{b} a\right)\left(\log _{a} x\right)
$$

to change the base of the logarithm. Applying the formula, we obtain that $\lg x=(\lg e) \cdot(\ln x)$. To show that $\ln n=O(\lg n)$, we need to find a constant $C>0$ and an N such that for every $n \geq N, \ln n \leq C \cdot \lg n$.

Choosing $C=1 / \lg e$ works in this case. To show that $\lg n=\Theta(\ln n)$, we need to find constants $c_{1}, c_{2}>0$ and N such that for every $n \geq N$, we have $c_{1} \ln n \leq \lg n \leq c_{2} \ln n$. For c_{2}, we can take $c_{2}=1 / C=\lg e$. For c_{1}, we can again take $c_{1}=1 / C=\lg e$. Here $\lg e$ is an absolute constant, so this gives $\lg n=\Theta(\ln n)$.
(d) Is it likewise true that $2^{n}=\Theta\left(e^{n}\right)$?

Most certainly not! Here it suffices to argue "informally". Indeed, if we look at

$$
\lim _{n \rightarrow \infty} \frac{e^{n}}{2^{n}}=\lim _{n \rightarrow \infty}\left(\frac{e}{2}\right)^{n}
$$

this goes to ∞, and hence it will surpass any given $C>0$ as n increases (specifically, once $n>\ln C / \ln (e / 2)$).
3. Recall the methods you learned at school for addition, long multiplication and long division. For each of these, informally analyse the asymptotic worst-case runtime on inputs of at most n decimal digits. You may take 'time' to mean the number of times you have to write a symbol on the page.

In this question, we shall satisfy ourselves with an informal, non-rigorous style of analysis.

For numbers of at most n digits, addition takes 'time' $\Theta(n)$. We have to write the at most $n+1$ digits of the answer, plus (at worst) a similar number of carry digits.

For long multiplication of two n-digit numbers, we in effect construct a list of n numbers each of at most $n+1$ digits, then add them. Not hard to convince oneself that all of this takes time $\Theta\left(n^{2}\right)$.

For integer long division (e.g. resulting in $a \operatorname{div} b$ and $a \bmod b$). The division will proceed in $\leq n$ 'rounds', in each of which we perform a subtraction of size $\leq n+1$. (The necessary values of $b, 2 b, \ldots, 9 b$ can be precomputed at the start, taking just time $\Theta(n)$.) So the overall runtime is clearly $O\left(n^{2}\right)$. To see that the worst-case runtime is also $\Omega\left(n^{2}\right)$, consider the situation of dividing an n-digit a by an $n / 2$-digit b. Clearly this can require around $n / 2$ subtractions of size $n / 2$.

