
Informatics 2 – Introduction to

Algorithms and Data Structures

Tutorial 1: Asymptotic Notation

SOLUTIONS

1. For each of the following five functions g, identify a function fi from the
list such that g = Θ(fi). Justify your answers as clearly as you can.

(a) g(n) = n(n+ 1)(2n+ 1)/6.

Growth rate is Θ(n3). An adequate justification (which can be made
fully rigorous) is that when this is expanded as a polynomial, the
highest-degree term is n3/3 – and as we saw in lectures, quadratic
and lower-order terms are o(n3). This implies that Θ(n3) is the
essential growth rate.

Note, incidentally, that this is the formula for Σn
k=1k

2.

(b) g(n) = n div 57 (integer division, rounding down).

This is Θ(n). Indeed, g(n) differs from n/57 (exact division) by at
most 1. More rigorously, we can see that once n ≥ 57, we’ll have
g(n) > n/114 (for instance), so that g(n) is sandwiched between
n/114 and n/57.

(c) g(n) = n mod 57 + 1.

This is O(1), because we have 1 ≤ g(n) ≤ 57 for all n. (Note that
without the ‘+1’, it would be O(1) but not Ω(1) (i.e. not eventually
bounded below by a positive constant), because n mod 57 would be
zero infinitely often.)

(d) g(n) = n lg n+(lg n)3+e−n. You may assume here that lg n = o(
√
n).

This one shows the usefulness of asymptotic notation for cleaning up
a messy formula. We claim g(n) = Θ(n lg n), as this is the dominant
term. The term e−n can clearly be ignored as it is always ≤ 1.
And from lg n = o(

√
n) it follows easily that (lg n)2 = o(n), whence

(lg n)3 = o(n lg n), so the second term also becomes negligible relative
to n lg n. Again, this can all be made completely rigorous with a little
effort.

(e) ⋆ Where would the factorial function fit into this picture? Does n!
have the same growth rate as one of the above functions fi? Or does
it fall between fi and fi+1 for some i?

The growth rate of n! falls strictly between that of 2n and 22
n

.

1



To see that 2n = o(n!), let’s look at the ratio n!/2n, which is

1× 2× 3× · · · × n

2× 2× 2× · · · × 2

It’s easy to see that this is at least n/2 (once n ≥ 2), which tends to
infinity as n does.

To see that n! = o(22
n

), we can note that for n ≥ 4,

n! < nn < (2n)n = 2n
2

≤ 22
n

2. (a) Show directly from the definition that 100n3 = o(n4).

Given c > 0, we need to pick a suitable N . We can arrive at this by
working backwards: what needs to be true in order that 100n3 < cn4?
Cancelling n3 from both sides, this is equivalent to 100 < cn (for
positive n), which in turn is equivalent to n > 100/c.

Having gone through something like this in rough working, we’re now
in a position to present the following polished solution, in which we
appear to pull a rabbit from a hat:

Given c > 0, consider any N > 100/c. Then for any n ≥ N we have

100n3 = c(100/c)n3 < c.n.n3 = cn4.

[The ‘polished solution’ is formally all we need to say to answer the
question, but the ‘rough working’ is perhaps more illuminating.]

(b) Show that if r, s are any real numbers with 0 ≤ r < s, then nr =
o(ns).

Here we can argue “informally’: if we take

lim
n→∞

ns

nr
= lim

n→∞
ns−r,

it is easy to see that this is ∞, since s > r. To argue formally, again
we can work backwards: we need an N large enough such that for
every c, and every n ≥ N , nr < c · ns holds. If we solve for n, it
follows that n > (1/c)1/(s−r), i.e., taking N > (1/c)1/(s−r) suffices.
Note that since s > r, the ratio 1/(s − r) in the exponent is always
well-defined.

[Tip: Looking at how the ratio of the two functions behaves is often
a good way forward.]

(c) Writing ‘lg’ for log to base 2 and ‘ln’ for log to base e, show that
lnn = O(lg n). Deduce that lg n = Θ(lnn).

We will make use of the well-known formula

logb x = (logb a)(loga x)

to change the base of the logarithm. Applying the formula, we obtain
that lg x = (lg e) ·(lnx). To show that lnn = O(lg n), we need to find
a constant C > 0 and an N such that for every n ≥ N , lnn ≤ C · lg n.

2



Choosing C = 1/ lg e works in this case. To show that lg n = Θ(lnn),
we need to find constants c1, c2 > 0 and N such that for every n ≥ N ,
we have c1 lnn ≤ lg n ≤ c2 lnn. For c2, we can take c2 = 1/C = lg e.
For c1, we can again take c1 = 1/C = lg e. Here lg e is an absolute
constant, so this gives lg n = Θ(lnn).

(d) Is it likewise true that 2n = Θ(en)?

Most certainly not! Here it suffices to argue “informally”. Indeed, if
we look at

lim
n→∞

en

2n
= lim

n→∞

(e
2

)n

,

this goes to ∞, and hence it will surpass any given C > 0 as n
increases (specifically, once n > lnC/ ln(e/2)).

3. Recall the methods you learned at school for addition, long multiplication
and long division. For each of these, informally analyse the asymptotic
worst-case runtime on inputs of at most n decimal digits. You may take
‘time’ to mean the number of times you have to write a symbol on the
page.

In this question, we shall satisfy ourselves with an informal, non-rigorous
style of analysis.

For numbers of at most n digits, addition takes ‘time’ Θ(n). We have
to write the at most n + 1 digits of the answer, plus (at worst) a similar
number of carry digits.

For long multiplication of two n-digit numbers, we in effect construct a
list of n numbers each of at most n + 1 digits, then add them. Not hard
to convince oneself that all of this takes time Θ(n2).

For integer long division (e.g. resulting in a div b and a mod b). The
division will proceed in ≤ n ‘rounds’, in each of which we perform a
subtraction of size ≤ n + 1. (The necessary values of b, 2b, . . . , 9b can be
precomputed at the start, taking just time Θ(n).) So the overall runtime
is clearly O(n2). To see that the worst-case runtime is also Ω(n2), consider
the situation of dividing an n-digit a by an n/2-digit b. Clearly this can
require around n/2 subtractions of size n/2.

3


