Modes of Operation
Block Ciphers and Stream Ciphers*
CPA-secure Encryption (Recall)

Practical CPA-secure Scheme

We have shown a CPA-secure encryption scheme based on any PRF:

$$\text{Enc}_k(m) = \langle r, F_k(r) \oplus m \rangle$$

Drawbacks?

- A 1-block plaintext results in a 2-block ciphertext
- Only defined for encryption of \(n \)-bit messages
- (Both key and message of length \(n \) i.e. OTP limitation 1)
- Solution: Modes of Operation
Encrypting Long Messages?

- CPA-security \implies security for the encryption of multiple messages
- So, we can encrypt the message $m_1 \ldots m_t$ as $\text{Enc}_k(m_1), \text{Enc}_k(m_2) \ldots \text{Enc}_k(m_t)$
- This is also CPA-secure!
Encrypting Long Messages?

\[c_i = E_k(m_i) \] is CPA-secure

\[c = (c_1, c_2, \ldots) = (E_k(m_1), E_k(m_2), \ldots) \] is CPA-secure
Drawback

- The ciphertext is twice the length of the plaintext:

\[E_k(m_i) = \langle r_i, F_k(r_i) \oplus m_i \rangle \]

- i.e. ciphertext expansion by a factor of 2

Question

Can we do better?
Mode of operation (MO)

Modes of operation

Efficient mechanisms for encrypting arbitrary length messages:

1. Block cipher MO
2. Stream cipher MO

Recall

- PRP/PRF \iff block cipher
- PRG \iff stream cipher
Block Ciphers

- Block ciphers are practical constructions of PRPs.
- No asymptotics: $F : \{0, 1\}^n \times \{0, 1\}^m \rightarrow \{0, 1\}^m$
 - $n = \text{key length}$
 - $m = \text{block length}$
- Hard to distinguish F_k from uniform $f \in \mathcal{P}_m$ even for attackers running in time 2^{n-c}
The Advanced Encryption Standard (AES)

- Designed by Belgian cryptographers **Vincent Rijmen** and **Joan Daemen**
- Original proposal **Rijndael**
- Standardized as AES in 2001 by US NIST
 - after 4 year competition, 15 candidates
The Advanced Encryption Standard (AES)

- Technical details
 - Key length = 128, 192, or 256 bits
 - Block length = 128 bits

- Rijndael vs. AES:
 - Rijndael block size 128/192/256 bits
 - AES block size 128 bits
The Advanced Encryption Standard (AES)

In 2003 US NSA approves the use of AES for secret (128 bit key) and top secret (256 bit key) documents

- The most widely used cipher today:
 - IPSec, SSL/TLS, WiFi IEEE 802.11, SSH, PGP/GPG, …
- Available in standard crypto libraries
- Best attack only slightly better than brute-force:
 - Bogdanov, Khovratovich, Rechberger, 2011: $2^{126.1}$
ECB Mode

\[\begin{align*}
 m_1 & \rightarrow F_k & \rightarrow C_1 \\
 m_2 & \rightarrow F_k & \rightarrow C_2 \\
 m_3 & \rightarrow F_k & \rightarrow C_3
\end{align*} \]

IMC Textbook 2nd ed. CRC Press 2015
ECB Mode

Electronic Codebook Mode

\[\text{Enc}_k(m_1 \ldots m_t) = F_k(m_1) \ldots F_k(m_t) \]

- Standardized in 1977 (!)
- Deterministic \(\Rightarrow\) not CPA-secure
- Can tell from the ciphertext whether \(m_i = m_j\)
- \(\Rightarrow\) not even EAV-secure
- **Should not be used in practice!**
Not just a theoretical problem!

original

encrypted using ECB mode
CTR Mode

\[\begin{align*}
&\text{ctr} \quad \text{ctr}+1 \quad \text{ctr}+2 \quad \text{ctr}+3 \\
&\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
&F_k \quad F_k \quad F_k \\
&\downarrow \quad \downarrow \quad \downarrow \\
&m_1 \quad m_2 \quad m_3 \\
&\downarrow \quad \downarrow \quad \downarrow \\
&\text{ctr} \quad \text{ctr}+1 \quad \text{ctr}+2 \quad \text{ctr}+3 \\
&\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
&c_1 \quad c_2 \quad c_3
\end{align*} \]
CTR Mode

Counter Mode

- $\text{Enc}_k(m_1 \ldots m_t)$ (arbitrary t):
 1. Choose $\text{ctr} \leftarrow \{0, 1\}^n$, set $c_0 = \text{ctr}$
 2. For $i = 1$ to t:
 - $c_i = m_i \oplus F_k(\text{ctr} + i)$
 3. Output c_0, c_1, \ldots, c_t

- Decryption?

Note

Ciphertext expansion is just 1 block (the ctr value)
CTR Mode

Theorem

If F is a PRF, then CTR mode is CPA-secure

Proof sketch

- ctr_i supports up to 2^n values, while message length $t \ll 2^n \implies$ no wraparound
- So the sequence $F_k(\text{ctr}_i + 1) \ldots F_k(\text{ctr}_i + t)$ used to encrypt the i-th message is pseudorandom
- Moreover, it is independent of every other such sequence unless $\text{ctr}_i + j = \text{ctr}_{i'} + j'$ for some i, j, i', j'
- It can be shown that the probability of such a collision is $\text{negl}(n)$
ECB vs. CTR

IMC Textbook 2nd ed. CRC Press 2015
CBC Mode
CBC Mode

Cipher Block Chaining

- \(\text{Enc}_k(m_1 \ldots m_t) \) (arbitrary \(t \)):
 1. Choose random \(c_0 \leftarrow \{0, 1\}^n \) (also called the IV)
 2. For \(i = 1 \) to \(t \):
 - \(c_i = F_k(m_i \oplus c_{i-1}) \)
 3. Output \(c_0, c_1, \ldots, c_t \)

- Decryption?
 - Requires \(F \) to be invertible i.e. a permutation
 - Hence \(F \) – block cipher

Note

Ciphertext expansion is just 1 block (the IV value)
CBC Mode

Theorem

If F is a PRP, then CBC mode is CPA-secure

Proof

Proof is more complicated than for CTR mode and is omitted
OFB Mode

IMC Textbook 2nd ed. CRC Press 2015
OFB Mode

Output Feedback Mode

- \textbf{Enc}_k(m_1 \ldots m_t) \text{ (arbitrary } t\text{):}
 1. Choose random \(c_0 \leftarrow \{0, 1\}^n \) (the IV); set \(y_0 \leftarrow c_0 \)
 2. For \(i = 1 \) to \(t \):
 - \(y_i = F_k(y_{i-1}) \)
 - \(c_i = m_i \oplus y_i \)
 3. Output \(c_0, c_1, \ldots, c_t \)

- \textbf{Decryption?}
 - \(F \) not required to be invertible

Note

OFB mimics OTP/POTP/Stream cipher
OFB Mode

Theorem

If F is a PRF, then OFB mode is CPA-secure

Proof

Omitted
Stream Ciphers*
Stream Ciphers

PRGs

- As we defined them, PRGs are limited
- Have fixed-length output: expand n to $p(n)$
- Produce all output at once

Stream Ciphers

- A practical realization of PRGs
- Can be viewed as producing an infinite stream of pseudorandom bits, on demand
- More flexible, more efficient
Popular Stream Cipher Standards

- **The A5 family** (A5/1 broken!, A5/2 broken!, A5/3)
 - GSM cellular communications standard
- **RC4** (broken!)
 - TLS/SSL, wireless (WEP/WPA)
- **E0** (broken!)
 - Bluetooth
- **Salsa20**
 - eSTREAM finalist, used in TLS
- **Sosemanuk, HC-128, Rabbit, Trivium, Grain, MICKEY**
 - Other eSTREAM finalists
 - http://www.ecrypt.eu.org/stream/
Stream Cipher

Pair of efficient, deterministic algorithms \((\text{Init}, \text{GetBits})\):

- **Init**: takes a seed \(s\) (and optional IV), and outputs initial state \(s_{t0}\)
- **GetBits**: takes the current state \(s_t\) and outputs a bit \(y\) along with updated state \(s_t'\)
 - In practice, \(y\) would be a block rather than a bit
End

Reference: Section 3.6.2