Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 9, part 2
Security Against Chosen-Ciphertext Attacks (CCA)
Summary

We described a scheme based on **PRF/block cipher** in a given **mode of operation**

- Solves OTP limitation 1 (key as long as the message)
- Solves OTP limitation 2 (key used only once)
- EAV-secure (single-message secrecy)
- CPA-secure (multiple message secrecy)
Summary

 Threat model: attacker observes multiple ciphertexts c_i
 Security goal: given c_i attacker cannot derive any information on any m_i
Summary

Threat model: attacker observes multiple ciphertexts \(c_i \)

Security goal: given \(c_i \) attacker can not derive any information on any \(m_i \)

So far considering only passive, eavesdropping attackers
What about Active Attackers?

What if the attacker can be active?

- Interfering with the communication channel
- Sending information on the communication channel
- Modifying what is sent over the channel
- Injecting traffic on the channel
Adversary A Interfering with the Channel

$\text{k} \xrightarrow{\text{c}} \text{c} \leftarrow \text{Enc}_k(m) \xrightarrow{\text{c}'} \text{c'} \rightarrow \text{Receiver} \overset{\text{Dec}_k(c')}{\rightarrow} \text{m'} := \text{Dec}_k(c')$

- In the new model we don’t assume that the ciphertext can reach the receiver **unchanged**
- A is allowed to **modify** c to c' and forward c' to the receiver
- Receiver decrypts c' to $m' \neq m$ and has **no way of detecting** the modification
Malleability

Question

How to capture this new property of the scheme in the presence of active attackers?

Malleability (informal)

A scheme is **malleable** if it is possible to modify a ciphertext and thereby cause a **predictable change to the plaintext**

Malleability can be dangerous e.g. encrypted bank transactions, encrypted email, etc.
Malleability

Observe
All the encryption schemes we have seen so far are malleable!

Simplest example: the OTP.
Malleability of the OTP

Plaintext $m = (m_0 \ldots m_n)$ as a sequence of n bits encrypted with n-bit key k

Attacker flips the last bit of the ciphertext c from c_n to c'_n

The modification causes **predictable change to the plaintext**

Namely, the last bit of m is flipped from m_n to $m'_n = m_n \oplus 1$
Malleability

Implication

Perfect secrecy does not imply non-malleability

► i.e. a perfectly secret scheme may still be malleable
Malleability

Malleability attacks exist on all the encryption schemes we have seen so far

- **OTP, POTP**
 - Attack described above
- **CTR, OFB, stream ciphers**
 - Same as OTP
- **ECB**
 - Generate new valid c from combining previously observed c_i
- **CBC**
 - Bit flip in c_i causes bit flip in m_{i+1}
Adversary A Injecting Messages On the Channel

- A special case of the "interfering" attack
- A impersonates the sender and injects its own ciphertext c'
- By forcing the receiver to decrypt c', A may learn (something about) m' (or m)
Chosen-ciphertext Attacks (CCA)

CCA

Models settings in which the attacker can influence what gets decrypted, and observe the effects

How to model?

- Allow attacker to submit ciphertexts of its choice* to the receiver, and learn the corresponding plaintext
- **In addition** to being able to carry out a chosen-plaintext attack

* With one restriction, described later
CPA vs. CCA

- CPA: A interacts with the sender i.e. has access to encryption oracle
- CCA: A interacts with the receiver i.e. has access to decryption oracle
 - in addition to access to an encryption oracle

- CCA is a stronger notion than CPA
- CCA implies CPA
CCA-security

\[\text{PrivK}^{\text{cca}}_{A, \Pi}(n) \]

Define a randomized experiment \(\text{PrivK}^{\text{cca}}_{A, \Pi}(n) \):

- **k** \(\leftarrow \) \(\text{Gen}(1^n) \)
- **A**\((1^n)\) interacts with an encryption oracle \(\text{Enc}_k(\cdot) \), and a decryption oracle \(\text{Dec}_k(\cdot) \), and then outputs \(m_0, m_1 \) of the same length
- \(b \leftarrow \{0, 1\} \), \(c \leftarrow \text{Enc}_k(m_b) \), give \(c \) to **A**
- **A** continues to interact with \(\text{Enc}_k(\cdot) \) and \(\text{Dec}_k(\cdot) \), but may not request decryption of \(c \)
- **A** outputs \(b' \); **A** succeeds if \(b = b' \), and experiment evaluates to 1 in this case
CCA-security

Π is secure against chosen-ciphertext attacks (CCA-secure) if for all PPT attackers A, there is a negligible function ϵ such that

$$\Pr[\text{Priv}_{A,\Pi}(n) = 1] \leq \frac{1}{2} + \epsilon(n)$$
CCA and Malleability

Fact

CCA-security implies non-malleability

If a scheme is malleable, then it cannot be CCA-secure:
1. Modify the challenge c to c'
2. Submit c' to the decryption oracle to get m'
3. The modification of c to c' **predicatably** modifies m to m'
4. From m' revert back the modification to recover m_0 that produced c
Is the CCA Model too Strong?

In the definition of CCA-security, the attacker can obtain the decryption of *any ciphertext of its choice* (besides the challenge ciphertext)

- Is this realistic?

There are scenarios where:

- One bit about decrypted ciphertexts is leaked
- The scenario occurs in the real world
- It can be exploited to learn the entire plaintext
End

Reference: Section 3.7.1