Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 9, part 2

Security Against Chosen-Ciphertext Attacks (CCA)

Summary

We described a scheme based on **PRF/block cipher** in a given **mode of operation**

- ► Solves OTP limitation 1 (key as long as the message)
- ► Solves OTP limitation 2 (key used only once)
- ► EAV-secure (single-message secrecy)
- ► CPA-secure (multiple message secrecy)

Summary

- Threat model: attacker observes multiple ciphertexts c_i
 Security goal: given c_i attacker can not derive any
 - information on any $m{m_i}$

Summary

Threat model: attacker observes multiple ciphertexts c_i
 Security goal: given c_i attacker can not derive any information on any m_i

So far considering only passive, eavesdropping attackers

What about Active Attackers?

What if the attacker can be **active**?

- ▶ Interfering with the communication channel
- ▶ Sending information on the communication channel
- ▶ Modifying what is sent over the channel
- ► Injecting traffic on the channel

Adversary \boldsymbol{A} Interfering with the Channel

- ► In the new model we don't assume that the ciphertext can reach the receiver **unchanged**
- ► **A** is allowed to **modify c** to **c'** and forward **c'** to the receiver
- ▶ Receiver decrypts c' to $m' \neq m$ and has no way of detecting the modification

Question

How to capture this new property of the scheme in the presence of **active attackers**?

Malleability (informal)

A scheme is **malleable** if it is possible to modify a ciphertext and thereby cause a **predictable change to the plaintext**

Malleability can be dangerous e.g. encrypted bank transactions, encrypted email, etc.

Observe

All the encryption schemes we have seen so far are malleable!

Simplest example: the OTP.

Malleability of the OTP

- Plaintext $m = (m_0 m_1 \dots m_n)$ as a sequence of n bits encrypted with n-bit key k
- Attacker flips the last bit of the ciphertext c from c_n to c'_n
- ► The modification causes **predictable change to the plaintext**

Namely, the last bit of m is flipped from m_n to $m'_n = m_n \oplus 1$

Implication

Perfect secrecy does not imply non-malleability

▶ i.e. a perfectly secret scheme may still be malleable

Malleability attacks exist on all the encryption schemes we have seen so far

- ► OTP, POTP
 - ► Attack described above
- ▶ CTR, OFB, stream ciphers
 - ► Same as OTP
- ► ECB

• Generate new valid c from combining previously observed c_i

► CBC

• Bit flip in c_i causes bit flip in m_{i+1}

Adversary \boldsymbol{A} Injecting Messages On the Channel

- ► A special case of the "interfering" attack
- A impersonates the sender and injects its own ciphertext c'
- ▶ By forcing the receiver to decrypt c', A may learn (something about) m' (or m)

Chosen-ciphertext Attacks (CCA)

CCA

Models settings in which the attacker can **influence what gets decrypted**, and observe the effects

How to model?

- ► Allow attacker to submit ciphertexts of its choice* to the receiver, and learn the corresponding plaintext
- ▶ In addition to being able to carry out a chosen-plaintext attack
- * With one restriction, described later

CPA vs. CCA

- ► CPA: *A* interacts with the sender i.e. has access to encryption oracle
- ► CCA: *A* interacts with the receiver i.e. has access to decryption oracle

▶ in addition to access to an **ecryption oracle**

- ▶ CCA is a stronger notion than CPA
- ► CCA implies CPA

CCA-security

 $\mathsf{PrivK}^{\mathrm{cca}}_{A,\Pi}(n)$

Define a randomized experiment $\mathsf{PrivK}_{A,\Pi}^{\mathsf{cca}}(n)$:

 $\blacktriangleright \ k \leftarrow \operatorname{Gen}(1^n)$

- $A(1^n)$ interacts with an encryption oracle $\text{Enc}_k(\cdot)$, and a decryption oracle $\text{Dec}_k(\cdot)$, and then outputs m_0, m_1 of the same length
- $\blacktriangleright \ b \leftarrow \{0,1\}, c \leftarrow \mathsf{Enc}_k(m_b), \text{ give } c \text{ to } A$
- ► A continues to interact with Enc_k(·) and Dec_k(·), but may not request decryption of c
- A outputs b'; A succeeds if b = b', and experiment evaluates to 1 in this case

CCA-security

 Π is secure against chosen-ciphertext attacks (CCA-secure) if for all PPT attackers A, there is a negligible function ϵ such that

$$\Pr[\mathsf{PrivK}^{\operatorname{cca}}_{A,\Pi}(n)=1] \leq rac{1}{2} + \epsilon(n)$$

CCA and Malleability

Fact

CCA-security implies non-malleability

If a scheme is malleable, then it cannot be CCA-secure:

- 1. Modify the challenge c to c'
- 2. Submit c' to the decryption oracle to get m'
- 3. The modification of c to c' predicatbly modifies m to m'
- 4. From m' revert back the modification to recover m_b that produced c

Is the CCA Model too Strong?

In the definition of CCA-security, the attacker can obtain the decryption of **any ciphertext of its choice** (besides the challenge ciphertext)

► Is this realistic?

There are scenarios where:

- One bit about decrypted ciphertexts is leaked
- ▶ The scenario occurs in the real world
- ▶ It can be exploited to learn the entire plaintext

End

Reference: Section 3.7.1