Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 5, part 1

So far

- ► Introduced **perfect secrecy** (PS)
- ► Introduced **OTP** and proved that it satisfies PS
- ▶ Described the two limitations of the OTP
 - 1. Key as long as the message
 - 2. Key used only once
- ► Introduced **perfect indistinguishability** (PI)
- ► Proved that **PI** is equivalent to **PS**

This lecture

- ▶ Relax PI to **computational secrecy** (CS): a weaker, yet practical notion of security
- ► Introduce pseudorandom generators (PRG)

Computational Secrecy

Computational Secrecy?

Idea

Relax perfect indistinguishability

Two approaches

- ► Concrete security
- ► Asymptotic security

Computational Indistinguishability (Concrete)

Concrete Approach

- \blacktriangleright (t, ϵ) -indistinguishability:
- ightharpoonup Security may fail with probability $\leq \epsilon$
- lacktriangle Restrict attention to attackers running in time $\leq t$
 - ightharpoonup Or in t CPU cycles

Computational Indistinguishability (Concrete)

Concrete Approach

 Π is (t, ϵ) -indistinguishable if for all attackers A running in time at most t, it holds that

$$\Pr[\mathsf{PrivK}_{A,\Pi} = 1] \leq rac{1}{2} + \epsilon$$

Note

- \blacktriangleright (∞ , 0)-indistinguishable = perfect indistinguishability
- ▶ Relax definition by taking $t < \infty$ and $\epsilon > 0$

Concrete Security

Drawbacks

- ightharpoonup Parameters t, ϵ are what we ultimately care about in the real world
- ▶ Does not lead to a clean theory:
 - ► Sensitive to exact computational model
 - ightharpoonup T can be (t, ϵ) -secure for many choices of t, ϵ
- ► Would like to have schemes where users can adjust the achieved security as desired

Asymptotic Security

- ightharpoonup Introduce security parameter n
 - ightharpoonup e.g. think of n as the key length
 - ► Chosen by honest parties when they generate/share key
 - ► Allows users to tailor the security level
 - ► Known by adversary
- ightharpoonup Measure running times of all parties, and the success probability of the adversary, as functions of n

Computational Indistinguishability (Asymptotic)

Asymptotic Approach

- ightharpoonup Security may fail with probability **negligible** in n
- ► Restrict attention to attackers running in time (at most) polynomial in *n*

Polynomial Function

$$Z^+ = \{1, 2, 3, \ldots\}$$
 – set of positive integers

Definition

A function $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ is **polynomial** if there exists c such that $f(n) < n^c$.

i.e. f is asymptotically bounded by a polynomial

Notation

 $\operatorname{\mathbf{poly}}(n)$ or just $\operatorname{\mathbf{poly}}$ – any polynomial function in n

Negligible Function

Definition

A function $f: Z^+ \to [0, 1]$ is **negligible** if for every polynomial $p, \exists N \text{ s.t. } \forall n > N: f(n) < \frac{1}{p(n)}$.

i.e. f decays faster than any inverse poly. for large enough n

Definition (equivalent)

A function $f: Z^+ \to [0,1]$ is negligible if $\forall c = \text{const}: \exists N$ s.t. $\forall n > N: f(n) < n^{-c}$.

Notation

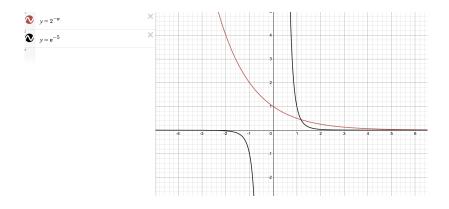
 $\operatorname{\mathbf{negl}}(n)$ or just $\operatorname{\mathbf{negl}}$ – any negligible function in n

Let
$$p(n) = n^{-5}$$
 i.e. $c = 5$.

$$f(n) = 2^{-n}$$

Solve $2^{-n} < n^{-5} \implies n > 5 \log n$ for $n \ge 23$ i.e. N = 22

$n^{-5} \text{ vs } 2^{-n}$



Let
$$p(n) = n^{-5}$$
 i.e. $c = 5$.

$$f(n) = 2^{-n}$$
 Solve $2^{-n} < n^{-5} \implies n > 5 \log n$ for $n \geq 23$ i.e. $N = 22$

Solve
$$2^{-\sqrt{n}} < n^{-5} \implies n > 25 \log^2 n$$
 for $n \ge \approx 3500$

$$f(n) = n^{-\log n}$$

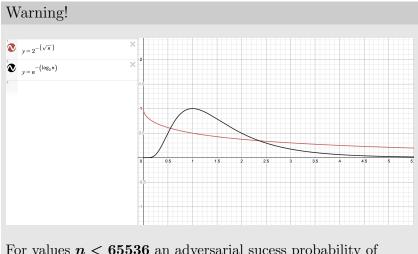
Solve $n^{-\log n} < n^{-5} \implies \log n > 5$ for $n \ge 33$

i.e. $\forall c, f(n)$ decays faster than n^{-c} for large enough n.

Warning!

- ▶ Wrong: $n^{-\log n}$ decays faster than $2^{-\sqrt{n}}$
- ► Note: $2^{-\sqrt{n}} < n^{-\log n}$: $\forall n > 65536$.
- ▶ Correct: $n^{-\log n}$ decays faster than $2^{-\sqrt{n}}$ for $n \leq 65536$

For values n<65536 an adversarial sucess probability of $n^{-\log n}$ is still preferrable (for the algorithm designer) to $2^{-\sqrt{n}}$



For values n < 65536 an adversarial sucess probability of $n^{-\log n}$ is still preferrable (for the algorithm designer) to $2^{-\sqrt{n}}$

Why polynomial? Why negligible?

- ► Somewhat arbitrary choices
- ► Borrowed from complexity theory
- ► efficient = probabilistic polynomial-time (PPT)
- ► Convenient closure properties

Closure Properties

- ▶ $poly \cdot poly = poly$
 - ▶ A PPT algorithm making calls to PPT subroutines is PPT
- ▶ $poly \cdot negl = negl$
 - ▶ Poly-many calls to subroutines that fail with negligible probability fail with negligible probability overall

Redefining Encryption in the Computational Setting

A private-key encryption scheme is defined by three \mathbf{PPT} algorithms (Gen,Enc,Dec) :

- ▶ Gen: takes as input 1^n ; outputs k. (Assume $|k| \ge n$.)
- ▶ Enc: takes as input a key k and message $m \in \{0, 1\}^*$; outputs ciphertext $c \leftarrow \operatorname{Enc}_k(m)$
- ightharpoonup Dec: takes key k and ciphertext c as input; outputs a message m or error

The 1^n notation

$$1^n = \underbrace{11\dots 1}_{n \text{ times}}$$

- ightharpoonup Denotes the size of the input e.g. $Gen(1^n)$ or $A(1^n)$
- ▶ Stresses that a PPT algorithm (e.g. Gen, A) is **polynomial in** n

Computational Indistinguishability (Asymptotic)

$\mathsf{PrivK}_{A,\Pi}(n)$

Fix a scheme Π and some adversary A. Define a randomized experiment $\mathsf{PrivK}_{A,\Pi}(n)$:

- ▶ $A(1^n)$ outputs $m_0, m_1 \in \{0,1\}^*$ of equal length
- $\blacktriangleright k \leftarrow \mathsf{Gen}(1^n), b \leftarrow \{0,1\}, c \leftarrow \mathsf{Enc}_k(m_b)$
- $\blacktriangleright b' \leftarrow A(c)$
- Adversary A succeeds if b = b', and we say the experiment evaluates to 1 in this case

Computational Indistinguishability (Asymptotic)

 Π is computationally indistinguishable (EAV-secure) if for all PPT attackers A, there is a negligible function ϵ such that

$$\Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1] \leq rac{1}{2} + \epsilon(n)$$

EAV-secure = indistinguishable against EAVesdropping

- ▶ Note that $f(n) = \Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$ is a function in n
- $ightharpoonup f: Z^+
 ightarrow [0,1]$ maps each value of n to a probability
- ightharpoonup Therefore we can talk about the **asymptotic behaviour** of f in the security parameter n

Consider a scheme Π where $\mathsf{Gen}(1^n)$ generates a uniform n-bit key. Assume that we know that the best attack is brute-force search of the key space

\boldsymbol{A} 's attack strategy

- 1. Input m_0, m_1, c ; find $b : \operatorname{Enc}_k(m_b) = c$.
- 2. **A** randomly selects $k \in \mathcal{K}$ and computes $\mathsf{Enc}_k(m_0)$ and $\mathsf{Enc}_k(m_1)$.
- 3. If k is correct (c matches Enc_k) output correct b
- 4. Else output random guess \boldsymbol{b}
- 5. Pr of A to succeed i.e. $\Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$ is:

Pr[picked correct key]Pr[correct guess]+ Pr[picked incorrect key]Pr[correct guess]

$$= \frac{1}{2^n} 1 + (1 - \frac{1}{2^n}) \frac{1}{2} = \frac{1}{2} + \frac{1}{2^{n+1}} = \frac{1}{2} + \text{negl}$$

 \implies Π is EAV-secure

Give more computational power to the attacker and assume A can make not 1 but t(n) key guess where t is polynomial in n

A's attack strategy (polynomial adversary)

- 1. Input m_0, m_1, c ; find $b : \operatorname{Enc}_k(m_b) = c$.
- 2. **A** randomly selects t(n) keys $k \in \mathcal{K}$ and for each key computes $\operatorname{Enc}_k(m_0)$ and $\operatorname{Enc}_k(m_1)$.
- 3. If one k is correct (c matches Enc_k) output correct b
- 4. Else output random guess \boldsymbol{b}
- 5. \Pr of A to succeed i.e. $\Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$ is:

$$\frac{t(n)}{2^n}1 + (1 - \frac{t(n)}{2^n})\frac{1}{2} = \frac{1}{2} + \frac{t(n)}{2^{n+1}} = \frac{1}{2} + \text{negl}$$

 \implies Π is EAV-secure

For polynomial t, the function $\frac{t(n)}{2^{n+1}}$ is **negligible**

ightharpoonup Recall: $poly \cdot negl = negl$

Example

- ▶ What happens when computers get faster?
- ightharpoonup e.g. consider a scheme that takes time n^2 to run but time 2^n to break with prob. 1
- ▶ What if computers get 4 times faster?
- ▶ Honest users double n and can thus maintain the same running time: $(2n)^2/4 = n^2$
- ▶ Time to break scheme is squared: 2^{2n}
 - ► Time required to break the scheme increases
- ► The security proofs still hold

Encryption and Plaintext Length

- ► In practice, we want encryption schemes that can encrypt arbitrary-length messages
- ► Encryption does not hide the plaintext length (in general)
- ▶ The definition takes this into account by requiring m_0, m_1 to have the same length
- ▶ Beware that leaking plaintext length can often lead to problems in the real world
 - e.g. plaintexts (yes, no) or numerical values
 - ► e.g. compression before encryption: small length ⇒ big plaintext redundancy (CRIME attack on TLS)

If leaking plaintext length is a concern, additional steps are necessary e.g. pad all messages to the same length.

Computational Secrecy

- ► From now on, we will assume the **computational setting** by default
- ► Usually, the asymptotic setting

End

References: Chapter 3, until Pag. 56.