Random Oracles and Digital Signatures

Michele Ciampi

Introduction to Modern Cryptography, Lecture 16
Random Oracles

- A *random oracle* is a function that produces a random looking output for each query it receives.
- It must be consistent: if a question is repeated, the random oracle must return the same answer.
- Useful when abstracting a hash function in cryptographic applications.
- If a scheme is secure assuming the adversary views some hash function as a random oracle, it is said to be secure in the **Random Oracle Model**.
Random Oracles

- Given query M s.t. $(M, \cdot) \notin \text{History}$, choose $t \leftarrow Y$ and add (M, t) to History. Return t.
- Given query M s.t. $(M, t) \in \text{History}$ for some t, return t.

Figure: Hash function $H : \{0, 1\}^* \rightarrow Y$ modelled as a random oracle.
Random Oracles

- A scheme is designed and proven secure in the random-oracle model.
- In the real world, a random oracle is not available. Instead, the RO is instantiated with a hash function \hat{H}.
Random Oracles

- If x has not been queried to H, then the value of $H(x)$ is uniform.
- If A queries x to H, the reduction can see this query and learn x. (Observability.)
- The reduction can set the value of $H(x)$ (i.e., the response to query x) to a value of its choice, as long as this value is correctly distributed, i.e., uniform. (Programmability.)

Objections to the RO model

- \hat{H} cannot possibly be random (or even pseudorandom) since the adversary learns the description of \hat{H}. Hence, the value of that function on all inputs is immediately determined.
- Given that the description of \hat{H} is given to the adversary, the adversary can query \hat{H} locally. How can a reduction see the queries that the adversary makes, or program it?
- We do not have a clear idea of what it means for a concrete hash function to be “sufficiently good”.
Support for the RO model

Why using the RO at all given all these problems?

▶ Efficient schemes

▶ A proof of security in the random-oracle model is significantly better than no proof at all.

▶ A proof of security for a scheme in the random-oracle model indicates that the scheme’s design is “sound”. If there is a problem is only because the hash function is not good enough.

▶ There have been no successful real-world attacks on schemes proven secure in the random-oracle model.
Digital signatures

- Digital signatures are technologically equivalent to hand-written signatures.
- A signer S has a unique private signing key and publishes the corresponding public verification key.
- S signs a message M and everyone who knows the public key can verify that M originated from the signer S.
A **digital signature scheme** is a triple of algorithms as follows:

- The *key generation* algorithm \(\text{Gen}(1^n) \) that outputs a signing (private) key \(sk \) and a verification (public) key \(vk \).

- The *signing* algorithm \(\text{Sign}(sk, M) \) that outputs a signature \(\sigma \) on message \(M \).

- The *verification* algorithm \(\text{Verify}(vk, M, \sigma) \) that outputs 1 if \(\sigma \) is valid and 0, otherwise.
Properties

- **Correctness:** For any message M in message space \mathcal{M}, it holds that

 \[\Pr \left[\text{Verify}(vk, M, \text{Sign}(sk, M)) = 1 \right] \geq 1 - \text{negl}(n). \]

 \((sk, vk) \leftarrow \text{Gen}(1^n)\)

- **Unforgeability:** There exists no PPT adversary that can produce a valid message-signature pair without receiving it from external sources.
A formal definition of unforgeability

- \(\text{Gen}(1^n) \) is run to obtain keys \((vk, sk)\).
- The adversary \(A \) is given \(vk \) and access to an oracle \(\text{Sign}(sk, \cdot) \). The adversary outputs a pair \((M, \sigma)\). Let \(Q \) denote the set of queries that \(A \) asked the oracle.
- \(A \) succeeds iff \(\text{Verify}(vk, M, \sigma) = 1 \) and \(M \not\in Q \). In this case, output 1. Else, output 0.

Figure: The game \(\text{Game}_{\text{EUF-CMA}}^{A_{\text{Sign}}} \).

We say that the digital signature scheme \((\text{Gen}, \text{Sign}, \text{Verify})\) has **existential unforgeability under adaptive chosen message attacks (EUF-CMA)** if for every PPT adversary \(A \), it holds that

\[
\Pr \left[\text{Game}_{\text{EUF-CMA}}^{A_{\text{Sign}}}(1^n) = 1 \right] \leq \text{negl}(n).
\]
A **trapdoor one-way function** (TOWF) $f_e : X_e \rightarrow Y_e$ with parameters $(e, z) \leftarrow \text{Gen}_{\text{TOWF}}(1^n)$ is a function that satisfies the following:

- **Easy to compute:** there exists a PPT algorithm that on input x returns $f_e(x)$.

- **Hard to invert:** for every PPT adversary \mathcal{A}

 $$\Pr \left[x \leftarrow X_e; \mathcal{A}(e, f_e(x)) \in f_e^{-1}(f_e(x)) \right] \leq \text{negl}(n).$$

- **Easy to invert with trapdoor:** There exists PPT algorithm \mathcal{T} such that

 $$\mathcal{T}(e, z, f_e(x)) \in f_e^{-1}(f_e(x)).$$
Let $H : \{0,1\}^* \rightarrow Y_e$ be a (collision resistant) hash function and $f_e : X_e \rightarrow Y_e$ be a TOWF with parameter generation algorithm G_{TOWF} and trapdoor algorithm \mathcal{T}. We define the following signature scheme:

- **Gen(1^n):** $(e, z) \leftarrow G_{\text{TOWF}}(1^n)$. Output $vk := e$ and $sk := (e, z)$.
- **Sign(sk, M):** $h \leftarrow H(M)$; $\sigma \leftarrow \mathcal{T}(e, z, h)$.
- **Verify(vk, M, σ):** If $f_e(\sigma) = H(M)$ output 1. Else, output 0.

Figure: Digital signatures from trapdoor one-way functions.
For any message M, we have that $h \leftarrow H(M)$ and $\sigma \leftarrow \mathcal{T}(e, z, h)$, so $\sigma \in f_e^{-1}(h) = f_e^{-1}(H(M))$. Therefore,

$$f_e(\sigma) = H(M).$$
Unforgeability

Theorem

Suppose that $f_e : X_e \rightarrow Y_e$ is bijective and $H : \{0, 1\}^* \rightarrow Y_e$ is a random oracle. Suppose that $|Y_e| \geq 2^n$. Then for every PPT adversary A that breaks the EUF-CMA security of $(\text{Gen}, \text{Sign}, \text{Verify})$ with probability α, i.e.,

$$\Pr \left[\text{Game}_{\text{EUF-CMA}}^{A_{\text{Sign}}}(1^n) = 1 \right] = \alpha ,$$

there exists a PPT adversary B that breaks the one-way property of f_e, i.e.,

$$\Pr \left[x \xleftarrow{\$} X_e; B(e, f_e(x)) = x \right] \geq \frac{1}{q_H} \left(\alpha - \frac{1}{2^n} \right) ,$$

where q_H is the number of queries A makes to the random oracle H.
Proof of EUF-CMA security

- Let \((e, z) \leftarrow \text{Gen}_{\text{TOWF}}(1^n), x \leftarrow X_e\) and \(y = f_e(x)\). Since \(f_e\) is a bijection, \(B\) is given \((e, y)\) and its goal is to find \(x = f_e^{-1}(y)\).

- The adversary \(B\) must simulate the oracles \(H\) and \(\text{Sign}\) to use adversary \(A\).
Proof of EUF-CMA security

Figure: The adversary B must simulate H and Sign to use adversary A.
Proof of EUF-CMA security

First, suppose that \mathcal{A} makes no signing queries, so it produces (M^*, σ^*) after making q_H queries to the random oracle.

\mathcal{B} will simulate the random oracle by plugging in y into the oracle’s responses.

- Choose $j \leftarrow \{1, 2, \ldots, q_H\}$.
 - Given query M s.t. $(M, \cdot) \notin \text{History}$: if this is the jth query, set $t = y$, else choose $t \leftarrow Y_e$. Add (M, t) to History. Return t.
 - Given query M s.t. $(M, t) \in \text{History}$ for some t, return t.

Figure: Modified random oracle simulation by \mathcal{B}.
Proof of EUF-CMA security

Let \(E \) be the event that \((M^*, \cdot) \in \text{History} \), i.e. \(A \) asks \(M^* \) to \(H \). Then,

\[
\Pr[\text{\textbf{A} succeeds } | \neg E] \leq \frac{1}{|Y_e|} \leq \frac{1}{2^n}.
\]

This is the case since given the event \(\neg E \), the adversary has not asked \(M^* \) to \(H \) and thus the value of \(H(M^*) \) is undetermined until the final step of \(B \) takes place. Thus,

\[
\Pr[f_e(\sigma^*) = H(M^*) | \neg E] = \frac{1}{|Y_e|} \leq \frac{1}{2^n}.
\]

Consequently,

\[
\Pr[\text{\textbf{A} succeeds } \land E] = \Pr[\text{\textbf{A} succeeds}] - \Pr[\text{\textbf{A} succeeds } \land \neg E] \geq
\]

\[
\geq \Pr[\text{\textbf{A} succeeds}] - \Pr[\text{\textbf{A} succeeds } | \neg E] \geq
\]

\[
\geq \alpha - \frac{1}{2^n}.
\]
Proof of EUF-CMA security

Given event E, let G be the event that the random oracle simulation will guess correctly the query that M^* is asked. We have that $\Pr[G|E] = \frac{1}{q_H}$.

If G occurs, then $H(M^*) = y$. If additionally A succeeds, then $f(\sigma^*) = H(M^*) = y$, i.e., σ^* is a preimage of y. So, B succeeds by returning $\sigma^* = x$.

Due to the independence of G and the success of A in the conditional space E, we have that $\Pr[B\text{ succeeds}] \geq \Pr[B\text{ succeeds } E] \cdot \Pr[E] \geq \Pr[A\text{ succeeds } \land G \land E] \cdot \Pr[E] = \Pr[A\text{ succeeds } \land E] \cdot \Pr[G|E] \cdot \Pr[E] = \frac{1}{q_H} \cdot \frac{1}{q_H}$.
Proof of EUF-CMA security

Given event E, let G be the event that the random oracle simulation will guess correctly the query that M^* is asked. We have that $\Pr[G|E] = \frac{1}{q_H}$.

If G occurs, then $H(M^*) = y$. If additionally A succeeds, then $f_e(\sigma^*) = H(M^*) = y$, i.e., σ^* is a preimage of y! So, B succeeds by returning $\sigma^* = x$.

Due to the independence of G and the success of A in the conditional space E, we have that

$$\Pr[B \text{ succeeds}] \geq \Pr[B \text{ succeeds}|E] \cdot \Pr[E] \geq$$

$$\geq \Pr[A \text{ succeeds} \land G|E] \cdot \Pr[E] =$$

$$= \Pr[A \text{ succeeds}|E] \cdot \Pr[G|E] \cdot \Pr[E] =$$

$$= \Pr[A \text{ succeeds} \land E] \cdot \Pr[G|E] \geq$$

$$\geq \frac{1}{q_H} \left(\alpha - \frac{1}{2^n} \right).$$
Proof of EUF-CMA security

Consider the general case where \mathcal{A} makes (polynomially many) queries to the signing oracle. \mathcal{B} must answer in a way that is consistent with the random oracle queries.

Choose $j \leftarrow \{1, 2, \ldots, q_H\}$.

- Given query M s.t. $(M, \cdot, \cdot) \notin$ History: if this is the jth query, set $t = y$, $\rho = \bot$. Else, choose $\rho \leftarrow X_e$ and set $t = f_e(\rho)$. Add (M, t, ρ) to History. Return t.

- Given query M s.t. $(M, t, \rho) \in$ History for some t, return t.

Figure: A second modified random oracle simulation as used by algorithm \mathcal{B} to “plug-in” a challenge y into the oracle’s responses while keeping the “pre-images” of the oracles responses under the map f_e.
Proof of EUF-CMA security

- When asked to sign M, \mathcal{B} can first ask its random oracle for M and look for (M, t, ρ) in History and, unless $\rho = \bot$, proceed to answer the query with ρ. By construction, $f_e(\rho) = t = H(M)$, so ρ is valid.

- The case $\rho = \bot$ means that the guess of \mathcal{B} for j is mistaken (due to the condition that a successful forgery must be on a message that \mathcal{A} does not query to the signing oracle) and thus the simulation of \mathcal{B} will fail. We call this event F.

- It holds that $(\mathcal{A} \text{ succeeds}) \cap G \cap F = \emptyset$.
Proof of EUF-CMA security

As previously, we have that

$$\Pr[A \text{ succeeds } \land E] \geq \alpha - \frac{1}{2^n}$$

In addition, since $(A \text{ succeeds}) \cap G \cap F = \emptyset$, it holds that

$$\Pr[A \text{ succeeds } \land G \land E \land \neg F] = \Pr[A \text{ succeeds } \land G \land E] .$$
Therefore, we get that

\[
\Pr[\mathcal{B} \text{ succeeds}] \geq \Pr[\mathcal{A} \text{ succeeds} \land G \land E \land \neg F] = \\
= \Pr[\mathcal{A} \text{ succeeds} \land G \land E] = \\
= \Pr[\mathcal{A} \text{ succeeds} \land G \mid E] \cdot \Pr[E] = \\
= \Pr[\mathcal{A} \text{ succeeds} \mid E] \cdot \Pr[G \mid E] \cdot \Pr[E] = \\
= \Pr[\mathcal{A} \text{ succeeds} \land E] \cdot \Pr[G \mid E] \geq \\
\geq \frac{1}{q_H} \left(\alpha - \frac{1}{2^n} \right).
\]
Proof of EUF-CMA security

The modified random oracle that B manages is indistinguishable from an original random oracle.

- Since $f_e(\cdot)$ is a bijection, $f_e(\rho) = t$ is uniformly distributed over Y_e when ρ is uniformly distributed over X_e.
- As for the jth query, recall that the input y of B is uniformly distributed over Y_e (since $y = f_e(x)$ and $x \leftarrow X_e$).
Instantiation: RSA full-domain hash signatures

Gen: On input 1^n choose two n-bit random primes p and q. Compute $N = pq$ and $\phi(N) = (p - 1)(q - 1)$. Choose $e > 1$ such that $gcd(e, \phi(N)) = 1$. Compute $d := e^{-1} \mod \phi(N)$. Return (N, e) as the verification key and (N, d) as the signing key. A full-domain hash function H is available to all parties.

Sign: on input a signing key (N, d) and a message M, output the digital signature

$$\sigma = H(M)^d \mod N.$$

Verify: on input a verification key (N, e) and (M, σ), verify that $\sigma^e = H(M) \mod N$. If equality holds, the result is True; otherwise, the result is False.

Figure: RSA-FDH signatures.
End

References: -From Introduction to Modern Cryptography: Sec. 5.5 (this is a discussion on the random oracle model). -From Prof. Kiayias’s lecture notes: Section 7 (pages 42-46), Section 7 (pages 45-47).