Random Oracles and Digital Signatures

Michele Ciampi

Introduction to Modern Cryptography, Lecture 16

- ▶ A random oracle is a function that produces a random looking output for each query it receives.
- It must be consistent: if a question is repeated, the random oracle must return the same answer.
- Useful when abstracting a hash function in cryptographic applications.
- If a scheme is secure assuming the adversary views some hash function as a random oracle, it is said to be secure in the Random Oracle Model.

- ▶ Given query M s.t. $(M, \cdot) \notin \mathsf{History}$, choose $t \overset{\$}{\leftarrow} Y$ and add (M, t) to History. Return t.
- $\blacktriangleright \ \, {\rm Given} \,\, {\rm query} \,\, M \,\, {\rm s.t.} \,\, (M,t) \in {\rm History} \,\, {\rm for} \,\, {\rm some} \,\, t, \,\, {\rm return} \,\, t.$

Figure: Hash function $H:\{0,1\}^* \longrightarrow Y$ modelled as a random oracle.

- A scheme is designed and proven secure in the random-oracle model.
- ▶ In the real world, a random oracle is not available. Instead, the RO is instantiated with a hash function \hat{H}

- ▶ If x has not been queried to H, then the value of H(x) is uniform.
- If A queries x to H, the reduction can see this query and learn x. (Observability.)
- The reduction can set the value of H(x) (i.e., the response to query x) to a value of its choice, as long as this value is correctly distributed, i.e., uniform. (Programmability.)

Objections to the RO model

- $ightharpoonup \hat{H}$ cannot possibly be random (or even pseudorandom) since the adversary learns the description of \hat{H} . Hence, the value of that function on all inputs is immediately determined.
- ▶ Given that the description of \hat{H} is given to the adversary, the adversary can query \hat{H} locally. How can a reduction see the queries that the adversary makes, or program it?
- ▶ We do not have a clear idea of what it means for a concrete hash function to be "sufficiently good".

Support for the RO model

Why using the RO at all given all these problems?

- Efficient schemes
- ► A proof of security in the random-oracle model is significantly better than no proof at all.
- ▶ A proof of security for a scheme in the random-oracle model indicates that the scheme's design is "sound". If there is a problem is only because the hash fuction is not good enough.
- ► There have been no successful real-world attacks on schemes proven secure in the random-oracle model.

Digital signatures

- ▶ Digital signatures are technologically equivalent to hand-written signatures.
- ► A signer S has a unique private signing key and publishes the corresponding public verification key.
- ightharpoonup S signs a message M and everyone who knows the public key can verify that M originated from the signer S.

Syntax

A digital signature scheme is a triple of algorithms as follows:

- The key generation algorithm $Gen(1^n)$ that outputs a signing (private) key sk and a verification (public) key vk.
- ▶ The signing algorithm $\mathsf{Sign}(sk, M)$ that outputs a signature σ on message M.
- ▶ The *verification* algorithm $Verify(vk, M, \sigma)$ that outputs 1 if σ is valid and 0, otherwise.

Properties

ightharpoonup Correctness: For any message M in message space \mathcal{M} , it holds that

$$\Pr\left[\mathsf{Verify}(vk,\!M,\mathsf{Sign}(sk,M)) = 1\right] \geq 1 - \mathsf{negl}(n) \;. \\ (sk,\!vk) \leftarrow \mathsf{Gen}(1^n)$$

Unforgeability: There exists no PPT adversary that can produce a valid message- signature pair without receiving it from external sources.

A formal definition of unforgeability

- Gen (1^n) is run to obtain keys (vk, sk).
- ▶ The adversary $\mathcal A$ is given vk and access to an oracle $\mathsf{Sign}(sk,\cdot)$. The adversary outputs a pair (M,σ) . Let $\mathcal Q$ denote the set of queries that $\mathcal A$ asked the oracle.
- ▶ $\mathcal A$ succeeds iff $\operatorname{Verify}(vk,M,\sigma)=1$ and $M\notin \mathcal Q$. In this case, output 1. Else, output 0.

Figure: The game $Game_{EUF-CMA}^{A^{Sign}}$.

We say that the digital signature scheme (Gen, Sign, Verify) has existential unforgeability under adaptive chosen message attacks (EUF-CMA) if for every PPT adversary \mathcal{A} , it holds that

$$\Pr\left[\mathrm{Game}_{\mathrm{EUF-CMA}}^{\mathcal{A}^{\mathsf{Sign}}}(1^n) = 1\right] \leq \mathsf{negl}(n) \;.$$

Trapdoor One-Way Functions

A trapdoor one-way function (TOWF) $f_e: X_e \longrightarrow Y_e$ with parameters $(e,z) \leftarrow \mathsf{Gen}_{\mathsf{TOWF}}(1^n)$ is a function that satisfies the following:

- ▶ Easy to compute: there exists a PPT algorithm that on input x returns $f_e(x)$.
- ► Hard to invert: for every PPT adversary A

$$\Pr\left[x \stackrel{\$}{\leftarrow} X_e; \mathcal{A}(e, f_e(x)) \in f_e^{-1}(f_e(x))\right] \le \mathsf{negl}(n) \ .$$

► Easy to invert with trapdoor: There exists PPT algorithm T such that

$$\mathfrak{I}(e,z,f_e(x)) \in f_e^{-1}(f_e(x)) .$$

Digital signatures from trapdoor one-way functions

Let $H:\{0,1\}^*\longrightarrow Y_e$ be a (collision resistant) hash function and $f_e:X_e\longrightarrow Y_e$ be a TOWF with parameter generation algorithm G_{TOWF} and trapdoor algorithm \mathcal{T} . We define the following signature scheme:

- ▶ $\operatorname{Gen}(1^n)$: $(e,z) \leftarrow \operatorname{Gen}_{\mathsf{TOWF}}(1^n)$. Output vk := e and sk := (e,z).
- $\qquad \qquad \mathbf{Sign}(sk,M) \colon \ h \leftarrow H(M); \ \sigma \leftarrow \Im(e,z,h).$
- lacksquare Verify (vk,M,σ) : If $f_e(\sigma)=H(M)$ output 1. Else, output 0.

Figure: Digital signatures from trapdoor one-way functions.

Correctness

For any message M, we have that $h \leftarrow H(M)$ and $\sigma \leftarrow \Im(e,z,h)$, so $\sigma \in f_e^{-1}(h) = f_e^{-1}(H(M))$. Therefore,

$$f_e(\sigma) = H(M)$$
.

Unforgeability

Theorem

Suppose that $f_e: X_e \longrightarrow Y_e$ is bijective and $H: \{0,1\}^* \longrightarrow Y_e$ is a random oracle. Suppose that $|Y_e| \geq 2^n$. Then for every PPT adversary $\mathcal A$ that breaks the EUF-CMA security of (Gen, Sign, Verify) with probability α , i.e.,

$$\Pr\left[\operatorname{Game}_{\operatorname{EUF-CMA}}^{\mathcal{A}^{\operatorname{Sign}}}(1^n) = 1\right] = \alpha ,$$

there exists a PPT adversary ${\mathfrak B}$ that breaks the one-way property of f_e , i.e.,

$$\Pr\left[x \stackrel{\$}{\leftarrow} X_e; \mathcal{B}(e, f_e(x)) = x\right] \ge \frac{1}{q_H} \left(\alpha - \frac{1}{2^n}\right),$$

where q_H is the number of queries $\mathcal A$ makes to the random oracle H.

- ▶ Let $(e,z) \leftarrow \mathsf{Gen}_{\mathsf{TOWF}}(1^n)$, $x \overset{\$}{\leftarrow} X_e$ and $y = f_e(x)$. Since f_e is a bijection, \mathcal{B} is given (e,y) and its goal is to find $x = f_e^{-1}(y)$.
- ▶ The adversary $\mathcal B$ must simulate the oracles H and Sign to use adversary $\mathcal A$.

Figure: The adversary ${\mathcal B}$ must simulate H and Sign to use adversary A.

- \triangleright First, suppose that \mathcal{A} makes no signing queries, so it produces (M^*, σ^*) after making q_H queries to the random oracle.
- \triangleright B will simulate the random oracle by plugging in y into the oracle's responses.

- t = y, else choose $t \stackrel{\$}{\leftarrow} Y_e$. Add (M, t) to History. Return t.
 - ▶ Given query M s.t. $(M,t) \in \mathsf{History}$ for some t, return t.

Figure: Modified random oracle simulation by \mathfrak{B} .

Let E be the event that $(M^*,\cdot)\in \mathsf{History}$, i.e. $\mathcal A$ asks M^* to H. Then,

$$\Pr\left[\mathcal{A} \text{ succeeds } \middle| \neg E\right] \leq \frac{1}{|Y_e|} \leq \frac{1}{2^n}$$
 .

This is the case since given the event $\neg E$, the adversary has not asked M^* to H and thus the value of $H(M^*)$ is undetermined until the final step of $\mathcal B$ takes place. Thus, $\Pr\left[f_e(\sigma^*) = H(M^*) \ \middle| \neg E\right] = \frac{1}{|Y_e|} \le \frac{1}{2^n}$.

Consequently,

$$\begin{split} \Pr\left[\mathcal{A} \text{ succeeds} \land E\right] &= \Pr\left[\mathcal{A} \text{ succeeds}\right] - \Pr\left[\mathcal{A} \text{ succeeds} \land \neg E\right] \geq \\ &\geq \Pr\left[\mathcal{A} \text{ succeeds}\right] - \Pr\left[\mathcal{A} \text{ succeeds} \mid \neg E\right] \geq \\ &\geq \alpha - \frac{1}{2^n} \;. \end{split}$$

Given event E, let G be the event that the random oracle simulation will guess correctly the query that M^* is asked. We have that $\Pr[G|E] = \frac{1}{q_H}$.

Given event E, let G be the event that the random oracle simulation will guess correctly the query that M^* is asked. We have that $\Pr[G|E] = \frac{1}{q_H}$.

If G occurs, then $H(M^*)=y$. If additionally $\mathcal A$ succeeds, then $f_e(\sigma^*)=H(M^*)=y$, i.e., σ^* is a preimage of y! So, $\mathcal B$ succeeds by returning $\sigma^*=x$.

Due to the independence of G and the success of $\ensuremath{\mathcal{A}}$ in the conditional space E, we have that

$$\begin{split} \Pr\left[\mathcal{B} \text{ succeeds}\right] &\geq \Pr\left[\mathcal{B} \text{ succeeds} \middle| E\right] \cdot \Pr[E] \geq \\ &\geq \Pr\left[\mathcal{A} \text{ succeeds} \land G \middle| E\right] \cdot \Pr[E] = \\ &= \Pr\left[\mathcal{A} \text{ succeeds} \middle| E\right] \cdot \Pr[G \middle| E\right] \cdot \Pr[E] = \\ &= \Pr\left[\mathcal{A} \text{ succeeds} \land E\right] \cdot \Pr[G \middle| E\right] \geq \\ &\geq \frac{1}{q_H} \left(\alpha - \frac{1}{2^n}\right) \,. \end{split}$$

Consider the general case where A makes (polynomially many) queries to the signing oracle. \mathcal{B} must answer in a way that is consistent with the random oracle queries.

- $\begin{array}{l} \text{Choose } j \xleftarrow{\$} \{1,2,\ldots,q_H\}. \\ \blacktriangleright \text{ Given query } M \text{ s.t. } (M,\cdot,\cdot) \not\in \text{History: if this is the } j \text{th query,} \end{array}$ set $t=y, \ \rho=\bot$. Else, choose $\rho \stackrel{\$}{\leftarrow} X_e$ and set $t=f_e(\rho)$. Add (M, t, ρ) to History. Return t.
 - Given query M s.t. $(M, t, \rho) \in \mathsf{History}$ for some t, return t.

Figure: A second modified random oracle simulation as used by algorithm \mathcal{B} to "plug-in" a challenge y into the oracle's responses while keeping the "pre-images" of the oracles responses under the map f_e .

- ▶ When asked to sign M, $\mathcal B$ can first ask its random oracle for M and look for (M,t,ρ) in History and, unless $\rho=\bot$, proceed to answer the query with ρ . By construction, $f_e(\rho)=t=H(M)$, so ρ is valid.
- The case $\rho=\bot$ means that the guess of $\mathcal B$ for j is mistaken (due to the condition that a successful forgery must be on a message that $\mathcal A$ does not query to the signing oracle) and thus the simulation of $\mathcal B$ will fail. We call this event F.
- ▶ It holds that $(A \text{ succeeds}) \cap G \cap F = \emptyset$.

As previously, we have that

$$\Pr\left[\mathcal{A} \text{ succeeds } \wedge E\right] \geq \alpha - \frac{1}{2^n}$$

In addition, since $(A \text{ succeeds}) \cap G \cap F = \emptyset$, it holds that

 $\Pr\left[\mathcal{A} \text{ succeeds} \land G \land E \land \neg F\right] = \Pr\left[\mathcal{A} \text{ succeeds} \land G \land E\right] \,.$

Therefore, we get that

$$\begin{split} \Pr\left[\mathcal{B} \text{ succeeds}\right] &\geq \Pr\left[\mathcal{A} \text{ succeeds} \land G \land E \land \neg F\right] = \\ &= \Pr\left[\mathcal{A} \text{ succeeds} \land G \land E\right] = \\ &= \Pr\left[\mathcal{A} \text{ succeeds} \land G\middle|E\right] \cdot \Pr[E] = \\ &= \Pr\left[\mathcal{A} \text{ succeeds}\middle|E\right] \cdot \Pr[G|E] \cdot \Pr[E] = \\ &= \Pr\left[\mathcal{A} \text{ succeeds} \land E\right] \cdot \Pr[G|E] \geq \\ &\geq \frac{1}{q_H}\left(\alpha - \frac{1}{2^n}\right) \,. \end{split}$$

The modified random oracle that ${\mathcal B}$ manages is indistinguishable from an original random oracle.

- ▶ Since $f_e(\cdot)$ is a bijection, $f_e(\rho) = t$ is uniformly distributed over Y_e when ρ is uniformly distributed over X_e .
- As for the jth query, recall that the input y of \mathcal{B} is uniformly distributed over Y_e (since $y = f_e(x)$ and $x \xleftarrow{\$} X_e$).

Instantiation: RSA full-domain hash signatures

- Gen: On input 1^n choose two n-bit random primes p and q. Compute N=pq and $\phi(N)=(p-1)(q-1)$. Choose e>1 such that $gcd(e,\phi(N))=1$. Compute $d:=e^{-1} \bmod \phi(N)$. Return (N,e) as the verification key and (N,d) as the signing key. A full-domain hash function H is available to all parties.
- ightharpoonup Sign: on input a signing key (N,d) and a message M, output the digital signature

$$\sigma = H(M)^d \bmod N .$$

Verify: on input a verification key (N,e) and (M,σ) , verify that $\sigma^e = H(M) \bmod N$. If equality holds, the result is True; otherwise, the result is False.

Figure: RSA-FDH signatures.

End

References: -From Introduction to Modern Cryptography: Sec. 5.5 (this is a discussion on the random oracle model). -From Prof. Kiayias's lecture notes: Section 7 (pages 42-46), Section 7 (pages 45-47).