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Modular Arithmetic

▶ Let a, b,N ∈ Z with N > 1. We use the notation a mod N to
denote the remainder of a upon division by N.

▶ We say that a and b are congruent modulo N, written
a = b mod N, if they have the same remainder when divided
by N. Note that a = b mod N if and only if N|(a − b).



Modular Arithmetic

▶ Congruence modulo N obeys the standard rules of arithmetic
with respect to addition and multiplication: if a = a′ mod N
and b = b′ mod N, then (a + b) = (a′ + b′) mod N and
ab = a′b′ mod N.

▶ Example: compute (1093028 · 190301) mod 100. Since
1093028 = 28 mod 100 and 190301 = 1 mod 100, we have

1093028 · 190301 = 28 · 1 = mod100 .



Modular Arithmetic

▶ Congruence modulo N does not respect (in general) division.
For this reason, ab = cb mod N does not necessarily imply
that a = c mod N.

▶ Example: N = 24. Then 3 · 2 = 6 = 15 · 2 mod 24, but
3 ̸= 15 mod 24.



Modular Arithmetic

▶ If for a given integer b there exists an integer c such that
bc = 1 mod N, we say that b is invertible modulo N and call c
a multiplicative inverse of b modulo N.

▶ c mod N is the unique multiplicative inverse of b that lies in
the range {1, . . . ,N − 1} and is denoted by b−1.

▶ When b is invertible modulo N, we define division by b as
multiplication by b−1.

▶ If ab = cb mod N and b is invertible, then we have that

(ab) · b−1 = (cb) · b−1 mod N ⇒ a = c mod N .



Modular Arithmetic

Which numbers are invertible modulo N?

Theorem
Let b,N integers with b ≥ 1 and N > 1. Then b is invertible
modulo N if and only if gcd(b,N) = 1.



Modular Arithmetic

Which numbers are invertible modulo N?

Theorem
Let b,N integers with b ≥ 1 and N > 1. Then b is invertible
modulo N if and only if gcd(b,N) = 1.



Groups

A group is a set G along with a binary operation ◦ for which the
following conditions hold:
▶ Closure: For all g, h ∈ G, g ◦ h ∈ G.
▶ Existence of identity: There exists an identity element e ∈ G

such that for all g ∈ G, e ◦ g = g = g ◦ e.
▶ Existence of inverse: For all g ∈ G there exists an element

h ∈ G such that g ◦ h = e = h ◦ g. Such an h is called an
inverse of g.

▶ Associativity: For all g1, g2, g3 ∈ G,
(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

A group G with operation ◦ is abelian if the following holds:
▶ Commutativity: For all g, h ∈ G, g ◦ h = h ◦ g.



Groups

▶ The inverse h of g ∈ G is unique.
▶ A set H ⊆ G is a subgroup of G if itself forms a group under

the same operation associated with G.
▶ If G has finite number of elements, we say it is finite. The

number of elements is called the order of G, denoted by |G|.



Examples

▶ The set of integers Z is an abelian group under addition with
identity 0. The set of the multiples of 2
{· · · ,−6,−4,−2, 0, 2, 4, 6, · · · } is a subgroup of Z.

▶ The set of non-zero real numbers R \ {0} is an abelian group
under multiplication with identity 1.

▶ The set {0, . . . ,N − 1} with respect to addition modulo N is
an abelian group of order N with identity 0. The inverse of a
is (N − a)modN. We denote this group by ZN.



Examples: the group Z∗
N

The set of invertible elements modulo N is an abelian group under
multiplication with identity 1. Namely,

Z∗
N

def
=

{
b ∈ {1, . . . ,N − 1}

∣∣gcd(b,N) = 1
}
.

▶ Commutativity and associativity follow from the integers’
properties.

▶ Inverse of b: use extended Euclidean algorithm to find x, y
such that bx + Ny = gcd(b,N) = 1. Then, x mod N is the
inverse of b modulo N.

▶ Closure: let a, b ∈ Z∗
N. Then (ab) mod N has inverse

(b−1a−1) mod N, so ab ∈ Z∗
N.



Examples: the group Z∗
15

Let N = 15 = 5 · 3. The set of invertible elements modulo 15 is
{1, 2, 4, 7, 8, 11, 13, 14}.
▶ The inverse of 2 is 8 since 2 · 8 = 16 = 1mod15.
▶ The inverse of 4 is 4 since 4 · 4 = 16 = 1mod15.
▶ The inverse of 7 is 13 since 7 · 13 = 91 = 1mod15.
▶ The inverse of 11 is 14 since 11 · 14 = 151 = 1mod15.



Examples: the group Z∗
N

The set of invertible elements modulo N is an abelian group under
multiplication with identity 1. Namely,

Z∗
N

def
=

{
b ∈ {1, . . . ,N − 1}

∣∣gcd(b,N) = 1
}
.

– Special case: for prime p, it holds that

Z∗
p = {1, 2, . . . , p − 1} .



Multiplicative notation for groups

We use multiplicative notation · instead of ◦. We define

gm = g · · · g︸ ︷︷ ︸
m times

.

The familiar rules of exponentiation hold: gm · gn = gm+n,
(gm)n = gmn, g1 = g, g0 = 1. If G is abelian, then
gm · hm = (g · h)m.



Theorem
Let G be a finite group with m = |G|, the order of the group.
Then for every element g ∈ G, gm = 1.
Proof. We prove for G abelian. Fix arbitrary g ∈ G and let
g1, . . . , gm be the elements of G. We claim that

g1 · · · gm = (gg1) · · · (ggm) .

To see this, note that ggi = ggj ⇒ g−1ggi = g−1ggj ⇒ gi = gj. So
each of the m elements in parentheses on the right-hand are
distinct. Because there are exactly m elements in G, the m
elements multiplied together on the right hand side are all the
elements in G in permuted order. Since G is abelian the order in
which elements are multiplied does not matter, so the right-hand
side and the left-hand side are equal.
Again using that G is abelian we obtain

g1 · · · gm = (gg1) · · · (ggm) = gm(g1 · · · gm) ⇒ gm = 1 .



Theorem
Let G be a finite group with m = |G|, the order of the group.
Then for every element g ∈ G, gm = 1.

Corollary
Let G be a finite group with m = |G| > 1. Then for every g ∈ G
and every integer x, we have gx = gxmodm.

Proof.
For some integers a, r, where r = xmodm, we have that
x = am + r, so

gx = gam+r = (gm)a · gr = 1a · gr = gr .
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Then for every element g ∈ G, gm = 1.

Corollary
Let G be a finite group with m = |G| > 1. Then for every g ∈ G
and every integer x, we have gx = gxmodm.
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Definition
Let G be a finite group and g ∈ G. The order of g is the smallest
positive integer i with gi = 1.

Let i the order of g ∈ G. We define the set (subgroup)

⟨g⟩ def
= {g0, . . . , gi−1} .



Cyclic groups

Definition
A finite group G of order m is cyclic if it can be generated by a
single element g ∈ G (of order m), i.e.,

G = ⟨g⟩ def
= {g0, . . . , gm−1} .

We say that g is a generator of G.

If g is a generator of G, then every element h ∈ G is equal to gx

for some x ∈ {0, . . . ,m − 1}.



Cyclic groups

Theorem
If G is a group of prime order p, then G is cyclic. Furthermore, all
elements of G except the identity are generators of G.

Theorem
If p is prime, then Z∗

p is a cyclic group of order p − 1.



Example

Consider the cyclic group Z∗
7. We have that ⟨2⟩ = {1, 2, 4} so 2 is

not a generator. However,

⟨3⟩ = {1, 3, 2, 6, 4, 5} = Z∗
7 ,

so 3 is a generator of Z∗
7.



The discrete logarithm problem

Let G denote a generic PPT group generation algorithm. G on
input 1n outputs a description of a cyclic group G, its order q
(with length of q, |q| = n) and a generator g ∈ G.
Since G = ⟨g⟩ = {g0, . . . , gq−1}, for every h ∈ G there is a unique
x ∈ Zq such that gx = h. We call x the discrete logarithm of h
with respect to g.



The discrete logarithm problem

Consider the following experiment for a group generation algorithm
G and an adversary A.
The discrete-logarithm experiment DLogA,G(n):

1. Run G(1n) to obtain (G, q, g).
2. Choose a uniform h ∈ G.
3. A is given (G, q, g, h) and outputs x ∈ Zq.
4. Output 1 if gx = h, and 0 otherwise.

Definition
We say that the discrete logarithm problem is hard relative to G, if
for all PPT adversaries A, it holds that

Pr
[
DLogA,G(n) = 1

]
≤ negl(n) .



The computational Diffie-Hellman problem

Consider the following experiment for a group generation algorithm
G and an adversary A.
The CDH experiment CDHA,G(n):

1. Run G(1n) to obtain (G, q, g).
2. Choose uniform x, y ∈ Zq and compute gx, gy.
3. A is given (G, q, g, gx, gy) and outputs h ∈ G.
4. Output 1 if h = gxy, and 0 otherwise.

Definition
We say that the CDH problem is hard relative to G, if for all PPT
adversaries A, it holds that

Pr
[
CDHA,G(n) = 1

]
≤ negl(n) .



The decisional Diffie-Hellman problem

Consider the following experiment for a group generation algorithm
G and an adversary A.
The DDH experiment DDHA,G(n):

1. Run G(1n) to obtain (G, q, g).
2. Choose uniform x, y, z ∈ Zq.

Definition
We say that the DDH problem is hard relative to G, if for every
PPT adversary A, it holds that∣∣∣Pr

[
A(G, q, g, gx, gy, gz) = 1

]
− Pr

[
A(G, q, g, gx, gy, gxy) = 1

]∣∣∣ ≤
≤ negl(n) , where in each case the probabilities are taken over the
experiment DDHA,G(n).



Relations between the problems

▶ Hardness of the CDH problem relative to G implies hardness
of the discrete-logarithm problem relative to G.

▶ Hardness of the DDH problem relative to G implies hardness
of the CDH problem relative to G.



Relations between the problems

Via reduction, we can show that
▶ If there is an algorithm that solves discrete-logarithm problem

relative to G (with some probability), then we can construct
an algorithm for solving the CDH problem relative to G.

▶ If there is an algorithm that solves CDH problem relative to G,
then we can construct an algorithm that solves the DDH
problem relative to G (i.e., distinguishes gxy from a uniform
element gz ∈ G).

Exercise!



Groups with DLog/CDH/DDH hardness

▶ Large prime order subgroups of Z∗
p, where p prime, are

believed to be safe.

Theorem
Let p = rq + 1, where p, q prime. Then

G def
= {hr modp | h ∈ Z∗

p}

is a subgroup of Z∗
p of order q.

We usually select r = 2, i.e., we choose p, q primes such that
p = 2q + 1.



End

References: Sec 8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.3.1, 8.3.2, 8.3.3 (only
the proofs in slides).


