Number Theory and Cryptographic Hardness Assumptions

Michele Ciampi

Introduction to Modern Cryptography, Lecture 12, Part 2

- Let a, b, N ∈ Z with N > 1. We use the notation a mod N to denote the remainder of a upon division by N.
- We say that a and b are congruent modulo N, written a = b mod N, if they have the same remainder when divided by N. Note that a = b mod N if and only if N|(a - b).

- Congruence modulo N obeys the standard rules of arithmetic with respect to addition and multiplication: if a = a' mod N and b = b' mod N, then (a + b) = (a' + b') mod N and ab = a'b' mod N.
- Example: compute (1093028 · 190301) mod 100. Since 1093028 = 28 mod 100 and 190301 = 1 mod 100, we have

 $1093028 \cdot 190301 = 28 \cdot 1 = \mod 100 \; .$

- Congruence modulo N does not respect (in general) division. For this reason, ab = cb mod N does not necessarily imply that a = c mod N.
- Example: N = 24. Then $3 \cdot 2 = 6 = 15 \cdot 2 \mod 24$, but $3 \neq 15 \mod 24$.

- If for a given integer b there exists an integer c such that bc = 1 mod N, we say that b is invertible modulo N and call c a multiplicative inverse of b modulo N.
- ▶ $c \mod N$ is the unique multiplicative inverse of *b* that lies in the range $\{1, ..., N-1\}$ and is denoted by b^{-1} .
- When b is invertible modulo N, we define division by b as multiplication by b⁻¹.
- If $ab = cb \mod N$ and b is invertible, then we have that

$$(ab) \cdot b^{-1} = (cb) \cdot b^{-1} \mod N \Rightarrow a = c \mod N$$
.

Which numbers are invertible modulo N?

Which numbers are invertible modulo N?

Theorem

Let b, N integers with $b \ge 1$ and N > 1. Then b is invertible modulo N if and only if gcd(b, N) = 1.

Groups

A group is a set $\mathbb G$ along with a binary operation \circ for which the following conditions hold:

- Closure: For all $g, h \in \mathbb{G}$, $g \circ h \in \mathbb{G}$.
- Existence of identity: There exists an identity element e ∈ G such that for all g ∈ G, e ∘ g = g = g ∘ e.
- Existence of inverse: For all g ∈ G there exists an element h ∈ G such that g ∘ h = e = h ∘ g. Such an h is called an inverse of g.

Associativity: For all
$$g_1, g_2, g_3 \in \mathbb{G}$$
,
 $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.

A group $\mathbb G$ with operation \circ is abelian if the following holds:

• Commutativity: For all $g, h \in \mathbb{G}$, $g \circ h = h \circ g$.

Groups

- The inverse *h* of $g \in \mathbb{G}$ is unique.
- A set 𝔄 ⊆ 𝔅 is a *subgroup* of 𝔅 if itself forms a group under the same operation associated with 𝔅.
- ► If G has finite number of elements, we say it is *finite*. The number of elements is called the *order* of G, denoted by |G|.

Examples

- ► The set of integers Z is an abelian group under addition with identity 0. The set of the multiples of 2 {···, -6, -4, -2, 0, 2, 4, 6, ···} is a subgroup of Z.
- The set of non-zero real numbers $\mathbb{R} \setminus \{0\}$ is an abelian group under multiplication with identity 1.
- ► The set {0,..., N − 1} with respect to addition modulo N is an abelian group of order N with identity 0. The inverse of a is (N − a) mod N. We denote this group by Z_N.

Examples: the group \mathbb{Z}_N^*

The set of invertible elements modulo N is an abelian group under multiplication with identity 1. Namely,

$$\mathbb{Z}_{\mathsf{N}}^* \stackrel{\text{def}}{=} \left\{ b \in \{1, \dots, \mathsf{N}-1\} \big| \mathsf{gcd}(b, \mathsf{N}) = 1 \right\} \,.$$

- Commutativity and associativity follow from the integers' properties.
- ► Inverse of b: use extended Euclidean algorithm to find x, y such that bx + Ny = gcd(b, N) = 1. Then, x mod N is the inverse of b modulo N.
- ▶ Closure: let $a, b \in \mathbb{Z}_N^*$. Then $(ab) \mod N$ has inverse $(b^{-1}a^{-1}) \mod N$, so $ab \in \mathbb{Z}_N^*$.

Let $N = 15 = 5 \cdot 3$. The set of invertible elements modulo 15 is $\{1, 2, 4, 7, 8, 11, 13, 14\}$.

- The inverse of 2 is 8 since $2 \cdot 8 = 16 = 1 \mod 15$.
- The inverse of 4 is 4 since $4 \cdot 4 = 16 = 1 \mod 15$.
- The inverse of 7 is 13 since $7 \cdot 13 = 91 = 1 \mod 15$.
- The inverse of 11 is 14 since $11 \cdot 14 = 151 = 1 \mod 15$.

The set of invertible elements modulo N is an abelian group under multiplication with identity 1. Namely,

$$\mathbb{Z}_{N}^{*} \stackrel{\text{def}}{=} \left\{ b \in \{1, \dots, N-1\} \big| \mathsf{gcd}(b, N) = 1 \right\}.$$

- Special case: for prime p, it holds that

$$\mathbb{Z}_{p}^{*} = \{1, 2, \dots, p-1\}$$
.

Multiplicative notation for groups

We use multiplicative notation \cdot instead of $\circ.$ We define

$$g^m = \underbrace{g \cdots g}_{m \text{ times}}$$
 .

The familiar rules of exponentiation hold: $g^m \cdot g^n = g^{m+n}$, $(g^m)^n = g^{mn}$, $g^1 = g$, $g^0 = 1$. If \mathbb{G} is abelian, then $g^m \cdot h^m = (g \cdot h)^m$.

Theorem

Let \mathbb{G} be a finite group with $m = |\mathbb{G}|$, the order of the group. Then for every element $g \in \mathbb{G}$, $g^m = 1$.

Proof. We prove for \mathbb{G} abelian. Fix arbitrary $g \in \mathbb{G}$ and let g_1, \ldots, g_m be the elements of \mathbb{G} . We claim that

$$g_1 \cdots g_m = (gg_1) \cdots (gg_m)$$
.

To see this, note that $gg_i = gg_j \Rightarrow g^{-1}gg_i = g^{-1}gg_j \Rightarrow g_i = g_j$. So each of the *m* elements in parentheses on the right-hand are distinct. Because there are exactly *m* elements in \mathbb{G} , the *m* elements multiplied together on the right hand side are all the elements in \mathbb{G} in permuted order. Since \mathbb{G} is abelian the order in which elements are multiplied does not matter, so the right-hand side and the left-hand side are equal.

Again using that ${\mathbb G}$ is abelian we obtain

$$g_1 \cdots g_m = (gg_1) \cdots (gg_m) = g^m (g_1 \cdots g_m) \Rightarrow g^m = 1$$
.

Theorem

Let \mathbb{G} be a finite group with $m = |\mathbb{G}|$, the order of the group. Then for every element $g \in \mathbb{G}$, $g^m = 1$.

Theorem

Let \mathbb{G} be a finite group with $m = |\mathbb{G}|$, the order of the group. Then for every element $g \in \mathbb{G}$, $g^m = 1$.

Corollary

Let \mathbb{G} be a finite group with $m = |\mathbb{G}| > 1$. Then for every $g \in \mathbb{G}$ and every integer x, we have $g^x = g^{x \mod m}$.

Proof.

For some integers a, r, where $r = x \mod m$, we have that x = am + r, so

$$g^{\mathsf{x}} = g^{\mathsf{a}m+\mathsf{r}} = (g^m)^{\mathsf{a}} \cdot g^{\mathsf{r}} = 1^{\mathsf{a}} \cdot g^{\mathsf{r}} = g^{\mathsf{r}} \,.$$

Definition

Let \mathbb{G} be a finite group and $g \in \mathbb{G}$. The *order* of g is the smallest positive integer i with $g^i = 1$.

Let *i* the order of $g \in \mathbb{G}$. We define the set (subgroup)

$$\langle g \rangle \stackrel{def}{=} \{ g^0, \dots, g^{j-1} \} \; .$$

Cyclic groups

Definition

A finite group \mathbb{G} of order *m* is *cyclic* if it can be generated by a single element $g \in \mathbb{G}$ (of order *m*), i.e.,

$$\mathbb{G} = \langle g \rangle \stackrel{def}{=} \{ g^0, \dots, g^{m-1} \} \; .$$

We say that g is a *generator* of \mathbb{G} .

If g is a generator of \mathbb{G} , then every element $h \in \mathbb{G}$ is equal to g^x for some $x \in \{0, \ldots, m-1\}$.

Cyclic groups

Theorem

If \mathbb{G} is a group of prime order p, then \mathbb{G} is cyclic. Furthermore, all elements of \mathbb{G} except the identity are generators of \mathbb{G} .

Theorem

If p is prime, then \mathbb{Z}_p^* is a cyclic group of order p-1.

Example

Consider the cyclic group $\mathbb{Z}_7^*.$ We have that $\langle 2\rangle=\{1,2,4\}$ so 2 is not a generator. However,

$$\langle 3 \rangle = \{1, 3, 2, 6, 4, 5\} = \mathbb{Z}_7^*$$
,

so 3 is a generator of \mathbb{Z}_7^* .

The discrete logarithm problem

Let \mathcal{G} denote a generic PPT group generation algorithm. \mathcal{G} on input 1^n outputs a description of a cyclic group \mathbb{G} , its order q (with length of q, |q| = n) and a generator $g \in \mathbb{G}$.

Since $\mathbb{G} = \langle g \rangle = \{g^0, \dots, g^{q-1}\}$, for every $h \in \mathbb{G}$ there is a *unique* $x \in \mathbb{Z}_q$ such that $g^x = h$. We call x the *discrete logarithm of h* with respect to g.

The discrete logarithm problem

Consider the following experiment for a group generation algorithm ${\mathcal G}$ and an adversary ${\mathcal A}.$

The discrete-logarithm experiment $DLog_{A,G}(n)$:

- 1. Run $\mathfrak{G}(1^n)$ to obtain (\mathbb{G}, q, g) .
- 2. Choose a uniform $h \in \mathbb{G}$.
- 3. \mathcal{A} is given (\mathbb{G}, q, g, h) and outputs $x \in \mathbb{Z}_q$.
- 4. Output 1 if $g^{x} = h$, and 0 otherwise.

Definition

We say that the discrete logarithm problem is hard relative to \mathcal{G} , if for all PPT adversaries \mathcal{A} , it holds that

$$\Pr\left[\mathsf{DLog}_{\mathcal{A},\mathcal{G}}(n)=1\right] \leq \mathsf{negl}(n) \;.$$

The computational Diffie-Hellman problem

Consider the following experiment for a group generation algorithm ${\mathcal G}$ and an adversary ${\mathcal A}.$

The CDH experiment $CDH_{\mathcal{A},\mathcal{G}}(n)$:

- 1. Run $\mathfrak{G}(1^n)$ to obtain (\mathbb{G}, q, g) .
- 2. Choose uniform $x, y \in \mathbb{Z}_q$ and compute g^x, g^y .
- 3. \mathcal{A} is given $(\mathbb{G}, q, g, g^x, g^y)$ and outputs $h \in \mathbb{G}$.
- 4. Output 1 if $h = g^{xy}$, and 0 otherwise.

Definition

We say that the CDH problem is hard relative to \mathfrak{G} , if for all PPT adversaries \mathcal{A} , it holds that

$$\Pr\left[\mathsf{CDH}_{\mathcal{A},\mathcal{G}}(\textit{n}) = 1\right] \le \mathsf{negl}(\textit{n}) \;.$$

The decisional Diffie-Hellman problem

Consider the following experiment for a group generation algorithm ${\mathcal G}$ and an adversary ${\mathcal A}.$

The DDH experiment $DDH_{A,G}(n)$:

- 1. Run $\mathfrak{G}(1^n)$ to obtain (\mathbb{G}, q, g) .
- 2. Choose uniform $x, y, z \in \mathbb{Z}_q$.

Definition

We say that the DDH problem is hard relative to \mathfrak{G} , if for every PPT adversary \mathcal{A} , it holds that

$$\left| \Pr \left[\mathcal{A}(\mathbb{G}, \mathbf{q}, \mathbf{g}, \mathbf{g}^{\mathsf{x}}, \mathbf{g}^{\mathsf{y}}, \mathbf{g}^{\mathsf{z}}) = 1 \right] - \Pr \left[\mathcal{A}(\mathbb{G}, \mathbf{q}, \mathbf{g}, \mathbf{g}^{\mathsf{x}}, \mathbf{g}^{\mathsf{y}}, \mathbf{g}^{\mathsf{xy}}) = 1 \right] \right| \leq$$

 $\leq {\rm negl}(n)$, where in each case the probabilities are taken over the experiment ${\rm DDH}_{{\cal A},{\rm G}}(n).$

Relations between the problems

- Hardness of the CDH problem relative to G implies hardness of the discrete-logarithm problem relative to G.
- Hardness of the DDH problem relative to G implies hardness of the CDH problem relative to G.

Relations between the problems

Via reduction, we can show that

- ▶ If there is an algorithm that solves discrete-logarithm problem relative to 𝔅 (with some probability), then we can construct an algorithm for solving the CDH problem relative to 𝔅.
- If there is an algorithm that solves CDH problem relative to G, then we can construct an algorithm that solves the DDH problem relative to G (i.e., distinguishes g^{xy} from a uniform element g^z ∈ G).

Exercise!

Groups with DLog/CDH/DDH hardness

► Large prime order subgroups of Z^{*}_p, where p prime, are believed to be safe.

Theorem Let p = rq + 1, where p, q prime. Then

$$\mathbb{G} \stackrel{def}{=} \{h^r \mod p \mid h \in \mathbb{Z}_p^*\}$$

is a subgroup of \mathbb{Z}_p^* of order q.

We usually select r = 2, i.e., we choose p, q primes such that p = 2q + 1.

End

References: Sec 8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.3.1, 8.3.2, 8.3.3 (only the proofs in slides).