Number Theory and
 Cryptographic Hardness Assumptions

Michele Ciampi

Introduction to Modern Cryptography, Lecture 12, Part 2

Modular Arithmetic

- Let $a, b, N \in \mathbb{Z}$ with $N>1$. We use the notation $a \bmod N$ to denote the remainder of a upon division by N.
- We say that a and b are congruent modulo N, written $a=b \bmod N$, if they have the same remainder when divided by N. Note that $a=b \bmod N$ if and only if $N \mid(a-b)$.

Modular Arithmetic

- Congruence modulo N obeys the standard rules of arithmetic with respect to addition and multiplication: if $a=a^{\prime} \bmod N$ and $b=b^{\prime} \bmod N$, then $(a+b)=\left(a^{\prime}+b^{\prime}\right) \bmod N$ and $a b=a^{\prime} b^{\prime} \bmod N$.
- Example: compute $(1093028 \cdot 190301) \bmod 100$. Since $1093028=28 \bmod 100$ and $190301=1 \bmod 100$, we have

$$
1093028 \cdot 190301=28 \cdot 1=\bmod 100
$$

Modular Arithmetic

- Congruence modulo N does not respect (in general) division. For this reason, $a b=c b \bmod N$ does not necessarily imply that $a=c \bmod N$.
- Example: $N=24$. Then $3 \cdot 2=6=15 \cdot 2 \bmod 24$, but $3 \neq 15 \bmod 24$.

Modular Arithmetic

- If for a given integer b there exists an integer c such that $b c=1 \bmod N$, we say that b is invertible modulo N and call c a multiplicative inverse of b modulo N.
- $c \bmod N$ is the unique multiplicative inverse of b that lies in the range $\{1, \ldots, N-1\}$ and is denoted by b^{-1}.
- When b is invertible modulo N, we define division by b as multiplication by b^{-1}.
- If $a b=c b \bmod N$ and b is invertible, then we have that

$$
(a b) \cdot b^{-1}=(c b) \cdot b^{-1} \bmod N \Rightarrow a=c \bmod N
$$

Modular Arithmetic

Which numbers are invertible modulo N ?

Modular Arithmetic

Which numbers are invertible modulo N ?

Theorem
Let b, N integers with $b \geq 1$ and $N>1$. Then b is invertible modulo N if and only if $\operatorname{gcd}(b, N)=1$.

Groups

A group is a set \mathbb{G} along with a binary operation \circ for which the following conditions hold:

- Closure: For all $g, h \in \mathbb{G}, g \circ h \in \mathbb{G}$.
- Existence of identity: There exists an identity element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}, e \circ g=g=g \circ e$.
- Existence of inverse: For all $g \in \mathbb{G}$ there exists an element $h \in \mathbb{G}$ such that $g \circ h=e=h \circ g$. Such an h is called an inverse of g.
- Associativity: For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}$, $\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)$.
A group \mathbb{G} with operation \circ is abelian if the following holds:
- Commutativity: For all $g, h \in \mathbb{G}, g \circ h=h \circ g$.

Groups

- The inverse h of $g \in \mathbb{G}$ is unique.
- A set $\mathbb{H} \subseteq \mathbb{G}$ is a subgroup of \mathbb{G} if itself forms a group under the same operation associated with \mathbb{G}.
- If \mathbb{G} has finite number of elements, we say it is finite. The number of elements is called the order of \mathbb{G}, denoted by $|\mathbb{G}|$.

Examples

- The set of integers \mathbb{Z} is an abelian group under addition with identity 0 . The set of the multiples of 2
$\{\cdots,-6,-4,-2,0,2,4,6, \cdots\}$ is a subgroup of \mathbb{Z}.
- The set of non-zero real numbers $\mathbb{R} \backslash\{0\}$ is an abelian group under multiplication with identity 1.
- The set $\{0, \ldots, N-1\}$ with respect to addition modulo N is an abelian group of order N with identity 0 . The inverse of a is $(N-a) \bmod N$. We denote this group by \mathbb{Z}_{N}.

Examples: the group \mathbb{Z}_{N}^{*}

The set of invertible elements modulo N is an abelian group under multiplication with identity 1 . Namely,

$$
\mathbb{Z}_{N}^{*} \stackrel{\text { def }}{=}\{b \in\{1, \ldots, N-1\} \mid \operatorname{gcd}(b, N)=1\}
$$

- Commutativity and associativity follow from the integers' properties.
- Inverse of b : use extended Euclidean algorithm to find x, y such that $b x+N y=\operatorname{gcd}(b, N)=1$. Then, $x \bmod N$ is the inverse of b modulo N.
- Closure: let $a, b \in \mathbb{Z}_{N}^{*}$. Then $(a b) \bmod N$ has inverse $\left(b^{-1} a^{-1}\right) \bmod N$, so $a b \in \mathbb{Z}_{N}^{*}$.

Examples: the group \mathbb{Z}_{15}^{*}

Let $N=15=5 \cdot 3$. The set of invertible elements modulo 15 is $\{1,2,4,7,8,11,13,14\}$.

- The inverse of 2 is 8 since $2 \cdot 8=16=1 \bmod 15$.
- The inverse of 4 is 4 since $4 \cdot 4=16=1 \bmod 15$.
- The inverse of 7 is 13 since $7 \cdot 13=91=1 \bmod 15$.
- The inverse of 11 is 14 since $11 \cdot 14=151=1 \bmod 15$.

Examples: the group \mathbb{Z}_{N}^{*}

The set of invertible elements modulo N is an abelian group under multiplication with identity 1 . Namely,

$$
\mathbb{Z}_{N}^{*} \stackrel{\text { def }}{=}\{b \in\{1, \ldots, N-1\} \mid \operatorname{gcd}(b, N)=1\}
$$

- Special case: for prime p, it holds that

$$
\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}
$$

Multiplicative notation for groups

We use multiplicative notation • instead of \circ. We define

$$
g^{m}=\underbrace{g \cdots g}_{m \text { times }}
$$

The familiar rules of exponentiation hold: $g^{m} \cdot g^{n}=g^{m+n}$, $\left(g^{m}\right)^{n}=g^{m n}, g^{1}=g, g^{0}=1$. If \mathbb{G} is abelian, then $g^{m} \cdot h^{m}=(g \cdot h)^{m}$.

Theorem

Let \mathbb{G} be a finite group with $m=|\mathbb{G}|$, the order of the group.
Then for every element $g \in \mathbb{G}, g^{m}=1$.
Proof. We prove for \mathbb{G} abelian. Fix arbitrary $g \in \mathbb{G}$ and let g_{1}, \ldots, g_{m} be the elements of \mathbb{G}. We claim that

$$
g_{1} \cdots g_{m}=\left(g g_{1}\right) \cdots\left(g g_{m}\right) .
$$

To see this, note that $g g_{i}=g g_{j} \Rightarrow g^{-1} g g_{i}=g^{-1} g g_{j} \Rightarrow g_{i}=g_{j}$. So each of the m elements in parentheses on the right-hand are distinct. Because there are exactly m elements in \mathbb{G}, the m elements multiplied together on the right hand side are all the elements in \mathbb{G} in permuted order. Since \mathbb{G} is abelian the order in which elements are multiplied does not matter, so the right-hand side and the left-hand side are equal.
Again using that \mathbb{G} is abelian we obtain

$$
g_{1} \cdots g_{m}=\left(g g_{1}\right) \cdots\left(g g_{m}\right)=g^{m}\left(g_{1} \cdots g_{m}\right) \Rightarrow g^{m}=1
$$

Theorem

Let \mathbb{G} be a finite group with $m=|\mathbb{G}|$, the order of the group. Then for every element $g \in \mathbb{G}, g^{m}=1$.

Theorem

Let \mathbb{G} be a finite group with $m=|\mathbb{G}|$, the order of the group. Then for every element $g \in \mathbb{G}, g^{m}=1$.

Corollary

Let \mathbb{G} be a finite group with $m=|\mathbb{G}|>1$. Then for every $g \in \mathbb{G}$ and every integer x, we have $g^{x}=g^{x \bmod m}$.

Proof.

For some integers a, r, where $r=x \bmod m$, we have that
$x=a m+r$, so

$$
g^{x}=g^{a m+r}=\left(g^{m}\right)^{a} \cdot g^{r}=1^{a} \cdot g^{r}=g^{r} .
$$

Definition

Let \mathbb{G} be a finite group and $g \in \mathbb{G}$. The order of g is the smallest positive integer i with $g^{i}=1$.

Let i the order of $g \in \mathbb{G}$. We define the set (subgroup)

$$
\langle g\rangle \stackrel{\text { def }}{=}\left\{g^{0}, \ldots, g^{i-1}\right\}
$$

Cyclic groups

Definition

A finite group \mathbb{G} of order m is cyclic if it can be generated by a single element $g \in \mathbb{G}$ (of order m), i.e.,

$$
\mathbb{G}=\langle g\rangle \stackrel{\text { def }}{=}\left\{g^{0}, \ldots, g^{m-1}\right\}
$$

We say that g is a generator of \mathbb{G}.

If g is a generator of \mathbb{G}, then every element $h \in \mathbb{G}$ is equal to g^{x} for some $x \in\{0, \ldots, m-1\}$.

Cyclic groups

Theorem
If \mathbb{G} is a group of prime order p, then \mathbb{G} is cyclic. Furthermore, all elements of \mathbb{G} except the identity are generators of \mathbb{G}.

Theorem
If p is prime, then \mathbb{Z}_{p}^{*} is a cyclic group of order $p-1$.

Example

Consider the cyclic group \mathbb{Z}_{7}^{*}. We have that $\langle 2\rangle=\{1,2,4\}$ so 2 is not a generator. However,

$$
\langle 3\rangle=\{1,3,2,6,4,5\}=\mathbb{Z}_{7}^{*},
$$

so 3 is a generator of \mathbb{Z}_{7}^{*}.

The discrete logarithm problem

Let \mathcal{G} denote a generic PPT group generation algorithm. \mathcal{G} on input 1^{n} outputs a description of a cyclic group \mathbb{G}, its order q (with length of $q,|q|=n$) and a generator $g \in \mathbb{G}$.
Since $\mathbb{G}=\langle g\rangle=\left\{g^{0}, \ldots, g^{q-1}\right\}$, for every $h \in \mathbb{G}$ there is a unique $x \in \mathbb{Z}_{q}$ such that $g^{x}=h$. We call x the discrete logarithm of h with respect to g.

The discrete logarithm problem

Consider the following experiment for a group generation algorithm \mathcal{G} and an adversary \mathcal{A}.

The discrete-logarithm experiment $\operatorname{DLog}_{\mathcal{A}, \mathcal{G}}(n)$:

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain (\mathbb{G}, q, g).
2. Choose a uniform $h \in \mathbb{G}$.
3. \mathcal{A} is given (\mathbb{G}, q, g, h) and outputs $x \in \mathbb{Z}_{q}$.
4. Output 1 if $g^{x}=h$, and 0 otherwise.

Definition

We say that the discrete logarithm problem is hard relative to \mathcal{G}, if for all PPT adversaries \mathcal{A}, it holds that

$$
\operatorname{Pr}\left[\operatorname{Dog}_{\mathcal{A}, \mathcal{G}}(n)=1\right] \leq \operatorname{negl}(n) .
$$

The computational Diffie-Hellman problem

Consider the following experiment for a group generation algorithm \mathcal{G} and an adversary \mathcal{A}.

The CDH experiment $\mathrm{CDH}_{\mathcal{A}, \mathcal{G}}(n)$:

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain (\mathbb{G}, q, g).
2. Choose uniform $x, y \in \mathbb{Z}_{q}$ and compute g^{x}, g^{y}.
3. \mathcal{A} is given $\left(\mathbb{G}, q, g, g^{x}, g^{y}\right)$ and outputs $h \in \mathbb{G}$.
4. Output 1 if $h=g^{x y}$, and 0 otherwise.

Definition

We say that the CDH problem is hard relative to \mathcal{G}, if for all PPT adversaries \mathcal{A}, it holds that

$$
\operatorname{Pr}\left[\mathrm{CDH}_{\mathcal{A}, \mathcal{G}}(n)=1\right] \leq \operatorname{neg}(n)
$$

The decisional Diffie-Hellman problem

Consider the following experiment for a group generation algorithm \mathcal{G} and an adversary \mathcal{A}.

The DDH experiment $\operatorname{DDH}_{\mathcal{A}, \mathcal{G}}(n)$:

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain (\mathbb{G}, q, g).
2. Choose uniform $x, y, z \in \mathbb{Z}_{q}$.

Definition

We say that the DDH problem is hard relative to \mathcal{G}, if for every PPT adversary \mathcal{A}, it holds that

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right]\right| \leq
$$

$\leq \operatorname{negl}(n)$, where in each case the probabilities are taken over the experiment $\mathrm{DDH}_{\mathcal{A}, \mathfrak{G}}(n)$.

Relations between the problems

- Hardness of the CDH problem relative to \mathcal{G} implies hardness of the discrete-logarithm problem relative to \mathcal{G}.
- Hardness of the DDH problem relative to \mathcal{G} implies hardness of the CDH problem relative to \mathcal{G}.

Relations between the problems

Via reduction, we can show that

- If there is an algorithm that solves discrete-logarithm problem relative to \mathcal{G} (with some probability), then we can construct an algorithm for solving the CDH problem relative to \mathcal{G}.
- If there is an algorithm that solves CDH problem relative to \mathcal{G}, then we can construct an algorithm that solves the DDH problem relative to \mathcal{G} (i.e., distinguishes $g^{x y}$ from a uniform element $\left.g^{z} \in \mathbb{G}\right)$.

Exercise!

Groups with DLog/CDH/DDH hardness

- Large prime order subgroups of \mathbb{Z}_{p}^{*}, where p prime, are believed to be safe.

Theorem
Let $p=r q+1$, where p, q prime. Then

$$
\mathbb{G} \stackrel{\text { def }}{=}\left\{h^{r} \bmod p \mid h \in \mathbb{Z}_{p}^{*}\right\}
$$

is a subgroup of \mathbb{Z}_{p}^{*} of order q.

We usually select $r=2$, i.e., we choose p, q primes such that $p=2 q+1$.

End

References: Sec 8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.3.1, 8.3.2, 8.3.3 (only the proofs in slides).

