Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 10, Part 2

Message Authentication Code (MAC)

So Far

Last lecture

- ► Introduced message integrity
- ► Introduced message authentication codes (MAC)

This lecture

MAC algorithms and proof of security

A Fixed-length MAC: Intuition

We need a keyed function Mac such that:

- ▶ Given $\mathsf{Mac}_k(m_1), \mathsf{Mac}_k(m_2), \ldots$
- ▶ ...it is infeasible to predict the value $\mathsf{Mac}_k(m)$ for any $m \notin \{m_1, \ldots\}$

PRF

Let f be PRF. Knowledge of $f(x_1), f(x_2), \ldots$ does not reveal any information on $f(x) : x \notin \{x_1, x_2, \ldots\}$.

Idea

Let Mac be a PRF i.e. set $\mathsf{Mac}_k \equiv F_k$

A Fixed-length MAC Construction

Fixed-length MAC

Let ${\pmb F}$ be a length-preserving PRF (i.e. block cipher). Construct the following MAC ${\pmb \Pi}:$

- Gen: choose a uniform key k for F
- $Mac_k(m)$: output $F_k(m)$
- Vrfy $_k(m,t)$: output 1 iff $F_k(m) = t$

A Fixed-length MAC Construction

Theorem

F is a PRF \implies Π is a secure MAC

Proof

By reduction

Proof by Reduction

IMC Textbook 2nd ed. CRC Press 2015

Proof by Reduction (see CPA-security)

High level

- \blacktriangleright Attacker A attacks MAC Π (as was defined)
- \blacktriangleright Design distinguisher D that uses A as a subroutine to attack the PRF F

▶ i.e. D tries to distinguish F from a random function (RF)

- ▶ D simulates to A the steps in the $\mathsf{Forge}_{A,\Pi}(n)$ experiment for F and for a RF
- \blacktriangleright Relate the success \mathbf{Pr} of \boldsymbol{A} to the success \mathbf{Pr} of \boldsymbol{D}
- If A succeeds $\implies D$ succeeds $\implies F \neq PRF$
- contradicts $F \text{ PRF} \implies A$ can not succeed $\implies \Pi$ is a secure MAC

The $\mathsf{Forge}_{A,\Pi}(n)$ Experiment (Recall)

Fix A, Π . Define randomized experiment $\mathsf{Forge}_{A,\Pi}(n)$:

- ▶ $k \leftarrow \text{Gen}(1^n)$
- A interacts with an oracle $Mac_k(\cdot)$:
 - A submits m_1, \ldots, m_i to $\mathsf{Mac}_k(\cdot)$
 - A collects back t_1, \ldots, t_i from $\mathsf{Mac}_k(\cdot)$
 - Let $M = \{m_1, \ldots, m_i\}$ be the set of messages submitted to the oracle
- A outputs (m, t)
- ▶ A succeeds, and the experiment evaluates to 1, if $Vrfy_k(m,t) = 1$ and $m \notin M$

$$\begin{split} \Pi \text{ is secure if } \forall \text{ PPT } A, \exists \epsilon \text{ negl. such that } \\ \Pr[\mathsf{Forge}_{A,\Pi}(n) = 1] \leq \epsilon(n) \end{split}$$

\boldsymbol{A} attacks the MAC $\boldsymbol{\Pi}$

D uses A as a subroutine in distingishing between RF f and PRF F_k for uniform k

A requests the tag on message m_1

D forwards m_1 to the oracle $\mathcal{O} \in \{f, F_k\}$

D gets back $t_1 = \mathcal{O}(m_1)$

D forwards $t_1 = \mathcal{O}(m_1)$ to A. From the perspective of A, t_1 is the tag of m_1

A outputs its forgery (m,t): $m \notin \{m_1,m_2\ldots\}, t$ – tag for m

D forwards m to the oracle $\mathcal{O} \in \{f, F_k\}$

D gets back $t^* = \mathcal{O}(m)$

If $t^* = t \implies D$ outputs 1; otherwise 0;

Proof by Reduction

The Simulation

D simulates $\mathsf{Forge}_{A,\Pi}(n)$ for A with f-RF or f-PRF:

- 1. A submits m_i : i = 1, 2... to the MAC \mathcal{O}
- 2. **D** simulates the interaction with the MAC \mathcal{O} for **A**:

• **D** forwards m_i to f; receives $t_i = f(m_i)$

 \blacktriangleright *D* returns t_i to *A*

- 3. *A* outputs (m, t); $m \notin \{m_1, m_2, ...\}$
- 4. *D* forwards *m* to f; receives $t^* = f(m)$
- 5. If $t^* = t \implies D$ outputs 1 (success); otherwise 0 (fail)

World 0: D with a Truly Random Function f

 D^f simulates $\mathsf{Forge}_{A,\Pi}(n)$ for A with truly random f

- ▶ By definition of RF observing $f(m_1), f(m_2), \ldots$ does not reveal information on $f(m): m \notin \{m_1, m_2, \ldots\}$
- ► Therefore

$$\Pr[D^{f(\cdot)} = 1] = \Pr[f(m) = t] = \Pr[t^* = t] = 2^{-n}$$

where n = |m|

World 1: D with a Pseudoandom Function $f = F_k$

D^{F_k} simulates $\mathsf{Forge}_{A,\Pi}(n)$ for A with truly random F_k

- The view of A in this case is **exactly** as in the $\mathsf{Forge}_{A,\Pi}(n)$ experiment
- ► Therefore

$$\Pr[D^{F_k(\cdot)} = 1] = \Pr[\mathsf{Forge}_{A,\Pi}(n) = 1]$$

The Reduction

Proof.

By the assumption that F is a PRF $\exists \epsilon(n) =$ negl:

$$\Pr_{k \leftarrow \{0,1\}^n}[D^{F_k(\cdot)} = 1] - \Pr_{f \leftarrow \mathcal{F}_n}[D^{f(\cdot)} = 1]| \le \epsilon(n)$$

By the simulation of $\mathsf{Forge}_{A,\Pi}(n)$ by D^f with RF:

$$\Pr_{f \leftarrow \mathcal{F}_n}[D^{f(\cdot)} = 1] = \Pr[f(m) = t] = 2^{-n}$$

By the simulation of $\mathsf{Forge}_{A,\Pi}(n)$ by D^{F_k} with PRF:

$$\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1]=\mathrm{Pr}[\mathsf{Forge}_{A,\Pi}(n)=1]$$

Therefore

$$\Pr[\mathsf{Forge}_{A,\Pi}(n) = 1] \leq \epsilon(n) + 2^{-n} = \operatorname{negl}(n)$$

 $\implies \Pi$ is a secure MAC

Limitations of the MAC Π

- \blacktriangleright Block ciphers (i.e. PRFs) have short, fixed-length block size
- ▶ e.g. AES has a **128**-bit block size (shorter than a tweet!)
- Therefore Π is limited to authenticating only short, fixed-length messages
- ► In practise we want to be able to send messages much longer than 128 bits
- ► We also want to be able to send messages of different (i.e. not fixed) length
- ► A solution: CBC-MAC (next)

Variable-length MAC

Suggestion

Can you construct a secure MAC for variable-length messages from a MAC for fixed-length messages?

Idea

$$\begin{split} \mathsf{Mac}_k'(m_1\dots m_l) &= \mathsf{Mac}_k(m_1)\dots \mathsf{Mac}_k(m_l) \\ \mathsf{Vrfy}_k'(m_1\dots m_l, t_1\dots t_l) &= 1 \iff \forall i: \ \mathsf{Vrfy}_k(m_i, t_i) = 1 \end{split}$$

Is this secure?

A Construction

Probem

Need to prevent (at least):

- ► Block reordering
- ► Truncation
- ▶ Mixing-and-matching blocks from multiple messages

One solution

$$\mathsf{Mac}_k'(m_1\dots m_l)=r, \mathsf{Mac}_k(r|l|1|m_1), \mathsf{Mac}_k(r|l|2|m_2), \dots$$

Not very efficient – can we do better? Yes: CBC-MAC.

Basic CBC-MAC

t

CBC-MAC vs. CBC-mode

- ► CBC-MAC is deterministic (no IV)
 - ▶ MACs do not need to be randomized to be secure
 - ▶ Verification is done by re-computing the result
- ▶ In CBC-MAC, only the final value is output
- ▶ Both are essential for security

Security of Basic CBC-MAC

Theorem

If \mathbf{F} is a length-preserving PRF with input length \mathbf{n} , then for any fixed \mathbf{l} basic CBC-MAC is a secure MAC for messages of length \mathbf{ln}

Proof

By reduction (omitted)

Note

- \blacktriangleright The sender and receiver must agree on the length parameter l in advance
- ▶ Basic CBC-MAC is not secure if this is not done!

CBC-MAC for Variable Length Messages

Method 1 Prepend the message with its block length \boldsymbol{l}

Method 2

- Apply F_k to the block length l to obtain key k_l
- Compute the tag with Basic CBC-MAC and key k_l
- ▶ Send (t, l)

Method 3

- Choose two keys $k_1 \leftarrow \{0,1\}^n, k_2 \leftarrow \{0,1\}^n$
- Compute t_1 with Basic CBC-MAC using key k_1
- Compute final tag using k_2 as $t = F_{k_2}(t_1)$

CBC-MAC for Variable Length Messages: Method ${\bf 1}$

Prepend the message with its block length \boldsymbol{l}

Hash Functions

Hash functions

Another way for constructing MACs for variable length messages

 \implies next lecture

End

References: Sec. 4.3 (not Theorem 4.8) and Sec 4.4.1