Introduction to Modern Cryptography

Michele Ciampi
(Slides courtesy of Prof. Jonathan Katz)

Lecture 4, part 1

One-time Pad

One-time Pad (OTP)

- Patented in 1917 by Vernam
- Invented (at least) 35 years earlier
- Proven perfectly secret by Shannon (1949)

One-time Pad

- Let $\boldsymbol{M}=\{0,1\}^{n}$
- Gen: choose a uniform key $k \in\{\mathbf{0}, \mathbf{1}\}^{n}$
- $\operatorname{Enc}_{k}(m)=k \oplus m$
- $\operatorname{Dec}_{k}(\boldsymbol{c})=\boldsymbol{k} \oplus \boldsymbol{c}$
- $\operatorname{Dec}_{k}\left(\operatorname{Enc}_{k}(\boldsymbol{m})\right)=\boldsymbol{k} \oplus(\boldsymbol{k} \oplus \boldsymbol{m})=(\boldsymbol{k} \oplus \boldsymbol{k}) \oplus \boldsymbol{m}=\boldsymbol{m}$

One-time Pad

Perfect Secrecy of One-time Pad

Theorem
The One-time Pad satisfies perfect secrecy.

Intuition

- Any observed ciphertext can correspond to any message
- (This is necessary, but not sufficient, for perfect secrecy)
- Having observed a ciphertext, the attacker cannot conclude for certain which message was sent

Perfect Secrecy of One-time Pad

Proof.

- Fix arbitrary distribution over $\mathcal{M}=\{\mathbf{0}, \mathbf{1}\}^{n}$, and choose arbitrary $m, c \in\{0,1\}^{n}$
- Check if

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

Perfect Secrecy of One-time Pad

Proof.

- Recall (Bayes' theorem)

$$
\operatorname{Pr}[M=m \mid C=c]=\frac{\operatorname{Pr}[C=c \mid M=m] \operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]}
$$

- We can see that $\forall \boldsymbol{c}, \boldsymbol{m}$

$$
\begin{aligned}
\operatorname{Pr}[C=c \mid M=m] & =\operatorname{Pr}[M \oplus K=c \mid M=m]= \\
=\operatorname{Pr}[m \oplus K=c] & =\operatorname{Pr}[K=c \oplus m]=2^{-n}
\end{aligned}
$$

Perfect Secrecy of One-time Pad

Proof.

By law of total probability:

$$
\begin{aligned}
& \operatorname{Pr}[C=c]= \\
& =\sum_{m^{\prime}} \operatorname{Pr}\left[C=c \mid M=m^{\prime}\right] \operatorname{Pr}\left[M=m^{\prime}\right] \\
& =\sum_{m^{\prime}} \operatorname{Pr}\left[K=m^{\prime} \oplus c \mid M=m^{\prime}\right] \operatorname{Pr}\left[M=m^{\prime}\right] \\
& =\sum_{m^{\prime}} 2^{-n} \operatorname{Pr}\left[M=m^{\prime}\right] \\
& =2^{-n} \sum_{m^{\prime}} \operatorname{Pr}\left[M=m^{\prime}\right]=2^{-n}
\end{aligned}
$$

Perfect Secrecy of One-time Pad

Proof.

$$
\begin{aligned}
& \operatorname{Pr}[M=m \mid C=c]= \\
& =\frac{\operatorname{Pr}[C=c \mid M=m] \operatorname{Pr}[M=m]}{\operatorname{Pr}[C=c]} \\
& =\frac{\operatorname{Pr}[K=m \oplus c \mid M=m] \operatorname{Pr}[M=m]}{2^{-n}} \\
& =\frac{2^{-n} \operatorname{Pr}[M=m]}{2^{-n}} \\
& =\operatorname{Pr}[M=m]
\end{aligned}
$$

One-time Pad and Brute-force Attacks

The same ciphertext \quad| Decrypted with this key... | ...gives this plaintext | | |
| :--- | :--- | :--- | :--- |
| | \rightarrow STHIHYZQRRBPIOWNP | \rightarrow ATTACKATBREAKFAST | |
| | \rightarrow BIHRFIGIODRYOGIRV | \rightarrow | RETREATBEFORENOON |
| | \rightarrow | MYARVOMGKVDHBRLBQ | \rightarrow |
| GOAROUNDINCIRCLES | | | |
| SMAIJIZJSIFPSTWFI | \rightarrow ATAVGOGQORURAAOUX | \rightarrow | STANDUTTERLYSTILL |
| | \rightarrow AENCQMLCSTQRAFJZQ | \rightarrow | SINGTWOHAPPYSONGS |
| | \rightarrow AFMOQIHYEOCPAEINQ | \rightarrow | SHOUTASLOUDASPOSS |
| | \rightarrow IIWTQUGJHXHXQMDLW | \rightarrow | KEEPTOTALLYSCHTUM |
| | \rightarrow SBPUPPKPZTRXALVUE | \rightarrow ALLOUTPUTPOSSIBLE | |

- OTP resists even a brute-force attack
- Decrypt a ciphertext with every key returns every possible plaintext (incl. every ASCII/English string)
- No way of telling the correct plaintext

Image credit: https://nakedsecurity.sophos.com

One-time Pad

- The One-time Pad achieves perfect secrecy!
- Resists even a brute-force attack
- One-time Pad has historically been used in the real world
- e.g. red phone between Washington and Moscow
- Not currently used! Why?

One-time Pad

Limitations of OTP

1. The key is as long as the message
2. A key must be used only once

- Only secure if each key is used to encrypt a single message
- (Trivially broken by a known-plaintext attack)
\Longrightarrow Parties must share keys of (total) length equal to the (total) length of all the messages they might ever send

Using the Same Key Twice?

- Say

$$
\begin{aligned}
& c_{1}=k \oplus m_{1} \\
& c_{2}=k \oplus m_{2}
\end{aligned}
$$

- Attacker can compute

$$
c_{1} \oplus c_{2}=\left(k \oplus m_{1}\right) \oplus\left(k \oplus m_{2}\right)=m_{1} \oplus m_{2}
$$

- This leaks information about $\boldsymbol{m}_{\mathbf{1}}, \boldsymbol{m}_{\mathbf{2}}$

Using the Same Key Twice?

$\boldsymbol{m}_{\mathbf{1}} \oplus \boldsymbol{m}_{\mathbf{2}}$ leaks information about $\boldsymbol{m}_{\mathbf{1}}, \boldsymbol{m}_{\mathbf{2}}$
Is this significant?

- $\boldsymbol{m}_{\mathbf{1}} \oplus \boldsymbol{m}_{\mathbf{2}}$ reveals where $\boldsymbol{m}_{\mathbf{1}}, \boldsymbol{m}_{\mathbf{2}}$ differ
- No longer perfectly secret!
- Exploiting characteristics of ASCII...

ASCII table (recall)

Dec	Hex	Char									
0	00	Null	32	20	Space	64	40	8	96	60	-
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	B	98	62	b
3	03	End of text	35	23	\#	67	43	C	99	63	c
4	04	End of transmit	36	24	\$	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	6	70	46	F	102	66	f
7	07	Audible bell	39	27	,	71	47	G	103	67	g
8	08	Backspace	40	28	$($	72	48	H	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4 A	J	106	6 A	j
11	OB	Vertical tab	43	2B	+	75	4 B	K	107	6 B	k
12	OC	Form feed	44	2 C	,	76	4 C	L	108	6 C	1
13	OD	Carriage return	45	2D	-	77	4 D	H	109	6 D	m
14	OE	Shift out	46	2E	-	78	4 E	N	110	6 E	n
15	OF	Shift in	47	2F	1	79	4 F	0	111	6 F	-
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	T	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans. block	55	37	7	87	57	U	119	77	v
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	y
26	1A	Substtution	58	3A	:	90	5A	2	122	7 A	z
27	1 B	Escape	59	3 B	;	91	5 B	[123	7 B	(
28	1 C	File separator	60	3 C	$<$	92	5 C	1	124	7 C	1
29	1D	Group separator	61	3D	$=$	93	5D]	125	7 D)
30	1 E	Record separstor	62	3E	$>$	94	5E	\wedge	126	7 E	\sim
31	1 F	Unit separator	63	3 F	?	95	5 F		127	7 F	\square

https://hubpages.com/technology/What-Are-ASCII-Codes

Using the Same Key Twice: recall ASCII

Observatoins

- Letters begin with $0 x 4,0 x 5,0 x 6$ or $0 x 7$
$-\Longrightarrow$ letters all begin with 01...
- ASCII code for the space character $0 \times 20=\mathbf{0 0 1 0 0 0 0 0}$ - \Longrightarrow the space character begins with $00 . .$.
- XOR of two letters gives 00...
- XOR of letter and space gives 01...
- Easy to identify XOR of letter and space!

Using the Same Key Twice

- The last byte of $\boldsymbol{c}_{\mathbf{1}} \oplus \boldsymbol{c}_{\mathbf{2}}$ starts with $\mathbf{0 1}$
- Therefore

$$
\begin{aligned}
& c_{1} \oplus c_{2}=m_{1} \oplus m_{2}=x \oplus 00100000 \\
& x=c_{1} \oplus c_{2} \oplus 00100000
\end{aligned}
$$

- e.g. let $\boldsymbol{c}_{\boldsymbol{1}} \oplus \boldsymbol{c}_{\mathbf{2}}=\mathbf{0 1 0 1 0 0 0 0}$

$$
\begin{aligned}
& x=01010000 \oplus 00100000 \\
& x=01110000=0 \times 70=" p "
\end{aligned}
$$

- Attacker learns one plaintext character: $\boldsymbol{m}_{\mathbf{1}}=\mathbf{p}$ or $m_{2}=\mathrm{p}$

One-time Pad

Drawbacks

- Key as long the message
- Only secure if each key is used to encrypt once
- Trivially broken by a known-plaintext attack

Note

These limitations are inherent for schemes achieving perfect secrecy

Optimality of the One-time Pad

Theorem

If (Gen, Enc, Dec) with message space \mathcal{M} is perfectly secret, then $|\mathcal{K}| \geq|\mathcal{M}|$.

Intuition

- Given any ciphertext, try decrypting under every possible key in \mathcal{K}
- This gives a list of up to $|\mathcal{K}|$ possible messages
- If $|\mathcal{K}|<|\mathcal{M}| \Longrightarrow$ some message is not on the list

Optimality of the One-time Pad

Proof.

- Assume $|\mathcal{K}|<|\mathcal{M}|$
- Need to show that there is a distribution on $\boldsymbol{\mathcal { M }}$, a message \boldsymbol{m}, and a ciphertext \boldsymbol{c} such that

$$
\operatorname{Pr}[M=m \mid C=c] \neq \operatorname{Pr}[M=m]
$$

Optimality of the One-time Pad

Proof.

- Take the uniform distribution on $\boldsymbol{\mathcal { M }}$
- Take any ciphertext \boldsymbol{c}
- Consider the set $\boldsymbol{M}(\boldsymbol{c})=\left\{\operatorname{Dec}_{\boldsymbol{k}}(\boldsymbol{c})\right\}_{\boldsymbol{k} \in \mathcal{K}}$
- the set of messages that could yield the ciphertext \boldsymbol{c}
$-|M(c)| \leq|K|<|M| \Longrightarrow \exists m$ s.t. $m \notin M(c)$:

$$
\operatorname{Pr}[M=m \mid C=c]=0 \neq \operatorname{Pr}[M=m]
$$

Summary

- We defined the notion of perfect secrecy (PS)
- We proved that the One-time Pad achieves PS
- We proved that the One-time Pad is optimal (in the key length)
- i.e. we cannot improve the key length
- Are we done? What about the limitations of OTP?
- Address OTP's limitations by relaxing the definition
- But in a meaningful way...
- (next slides)

End

References: From Section 2.2 until the end of Chapter 2.

