Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 4, part 2

Is the notion too strong?

PS requires that absolutely **no information** about the plaintext is leaked, even to eavesdroppers with **unlimited computational power**

- ▶ Has some inherent drawbacks
- Seems unnecessarily strong

Computational Secrecy (CS)

A weaker, yet practical notion

- Still fine if a scheme leaks information with tiny probability to eavesdroppers with bounded computational resources
- ▶ i.e. we can **relax perfect secrecy** by
 - 1. Allowing security to "fail" with tiny probability
 - 2. Restricting attention to "efficient" attackers

Tiny probability of failure?

- Say security fails with probability 2^{-60}
- ► Should we be concerned about this?
- ▶ With probability > 2⁻⁶⁰, the sender and receiver will both be struck by lightning in the next year...
- ► Something that occurs with probability 2⁻⁶⁰/sec is expected to occur once every 100 billion years

Bounded attackers?

- Consider brute-force search of key space; assume one key can be tested per clock cycle
- ▶ Desktop computer $\approx 2^{57}$ keys/year
- Supercomputer $\approx 2^{80}$ keys/year
- Supercomputer since Big Bang $\approx 2^{112}$ keys
- Therefore restricting attention to attackers who can try 2¹¹² keys is fine!
- Modern key space: 2^{128} keys or more...

An Equivalent Definition of Perfect Secrecy

Fix message $m \in \mathcal{M}$ and vary $k \in \mathcal{K}$ to get PD over \mathcal{C} denoted D_m .

Definition

Encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} satisfies **perfect indistinguishability** if

$$orall m_0
eq m_1 \in \mathcal{M}: \ D_{m_0} = D_{m_1}$$

i.e. the distributions D_{m_0} and D_{m_1} are identical.

$\mathsf{PrivK}_{A,\Pi}$

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme with message space \mathcal{M} , and A an adversary. Define a randomized experiment $\text{PrivK}_{A,\Pi}$:

- 1. A outputs $m_0, m_1 \in \mathcal{M}$
- 2. $k \leftarrow \text{Gen}, b \leftarrow \{0, 1\}, c \leftarrow \text{Enc}_k(m_b)$ (challenge)
- 3. $b' \leftarrow A(c)$
- 4. Adversary A succeeds if b = b', and we say the experiment evaluates to 1 in this case

Π is **perfectly indistinguishable** if for **all** attackers (algorithms) A, it holds that

$$\Pr[\mathsf{PrivK}_{A,\Pi}=1]=rac{1}{2}$$

Note

Easy to succeed with probability 1/2, just pick randomly b

Theorem

 Π is perfectly indistinguishable $\iff \Pi$ is perfectly secret

i.e. perfect indistinguishability is just an alternate definition of perfect secrecy

Perfect Secrecy (recall)

Definition

Encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} and ciphertext space \mathcal{C} is **perfectly secret** if $\forall PD$ over \mathcal{M} , $\forall m \in \mathcal{M}$, and $\forall c \in \mathcal{C}$ with $\Pr[C = c] > 0$, it holds that

$$\Pr[M = m | C = c] = \Pr[M = m]$$

i.e. the distribution of \boldsymbol{M} does not change conditioned on observing the ciphertext

Sufficient and Necessary Condition for PS

Lemma

Encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} and ciphertext space \mathcal{C} is **perfectly secret** <u>if and only if</u> $\forall PD$ over \mathcal{M} , $\forall m \in \mathcal{M}$, and $\forall c \in \mathcal{C}$, it holds that

$$\Pr[C=c|M=m]=\Pr[C=c]$$

Sufficient and Necessary Condition for PS

Proof.

$$\blacktriangleright \ (\Longrightarrow) \ \mathrm{let} \ \mathbf{Pr}[C=c|M=m] = \mathbf{Pr}[C=c]$$

► By Bayes's rule:

$$\Pr[C = c | M = m] = \frac{\Pr[M = m | C = c] \Pr[C = c]}{\Pr[M = m]}$$
$$\underbrace{\Pr[C = c]}_{\Pr[C = c]} = \frac{\Pr[M = m | C = c] \Pr[C = c]}{\Pr[M = m]}$$
$$\Pr[M = m] = \Pr[M = m | C = c]$$

 $\blacktriangleright \implies$ (Gen, Enc, Dec) is PS

Sufficient and Necessary Condition for PS

Proof.

• (
$$\Leftarrow$$
) let (Gen, Enc, Dec) be PS i.e.

$$\Pr[M = m | C = c] = \Pr[M = m]$$

► By Bayes's rule, analogously:

$$\Pr[M = m | C = c] = \frac{\Pr[C = c | M = m] \Pr[M = m]}{\Pr[C = c]}$$
$$\underbrace{\Pr[M = m]}_{\Pr[M = m]} = \frac{\Pr[C = c | M = m] \Pr[M = m]}{\Pr[C = c]}$$

$$\blacktriangleright \implies \Pr[C = c] = \Pr[C = c | M = m]$$

Theorem

 Π is perfectly indistinguishable $\iff \Pi$ is perfectly secret

Proof.

- ▶ (\implies) Π is perfectly secret
- ▶ By the PS Lemma:

 $orall m \in \mathcal{M}, c \in \mathcal{C}: \ \Pr[C = c | M = m] = \Pr[C = c]$

- ► Therefore $\forall m_0 \neq m_1 \in \mathcal{M}$: $\Pr[C = c | M = m_0] = \Pr[C = c]$ $\Pr[C = c | M = m_1] = \Pr[C = c]$
- \implies $\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1]$ • i.e. Π is perfectly indistinguishable

Proof.

- \blacktriangleright (\Longleftarrow) Π is perfectly indistinguishable
- ▶ Fix $m_0 \in \mathcal{M}$ and $c \in \mathcal{C}$

► Denote

$$\Pr[C = c | M = m_0] = p$$

• Since Π is PI, $\forall m \in \mathcal{M}$:

$$\Pr[C=c|M=m]=\Pr[C=c|M=m_0]=p$$

Proof.

▶ By the law of total probability:

$$\begin{split} \Pr[C=c] &= \sum_{m \in \mathcal{M}} \Pr[C=c|M=m] \Pr[M=m] \\ &= \sum_{m \in \mathcal{M}} p \, \Pr[M=m] \\ &= p \sum_{m \in \mathcal{M}} \Pr[M=m] \\ &= p \\ &= \Pr[C=c|M=m_0] \end{split}$$

 $\blacktriangleright \implies \Pr[C = c] = \Pr[C = c | M = m_0]$

Proof.

▶ Since m_0 – chosen arbitrary, by the PS Lemma:

 $orall m \in \mathcal{M}, c \in \mathcal{C}: \ \Pr[C = c | M = m] = \Pr[C = c]$

$\blacktriangleright\,$ i.e. Π is perfectly secret

- ► Introduced perfect secrecy (PS)
- ▶ Introduced OTP and proved that it satisfies PS
- Described the two limitations of the OTP
- ► Introduced perfect indistinguishability (PI)
- ▶ Proved that PI is equivalent to PS
- ▶ Next lecture: relax PI to computational secrecy (CS)
 - ▶ a weaker, yet practical notion of security

End

References: From the last paragraph of Pag. 30 until Pag. 32.