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Perfect Indistinguishability
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Perfect Secrecy (PS)

Is the notion too strong?

PS requires that absolutely no information about the
plaintext is leaked, even to eavesdroppers with unlimited
computational power

» Has some inherent drawbacks

» Seems unnecessarily strong
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Computational Secrecy (CS)

A weaker, yet practical notion

» Still fine if a scheme leaks information with tiny
probability to eavesdroppers with bounded
computational resources

» i.e. we can relax perfect secrecy by

1. Allowing security to ”fail” with tiny probability
2. Restricting attention to "efficient” attackers
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Tiny probability of failure?

» Say security fails with probability 2760

» Should we be concerned about this?

» With probability > 2760, the sender and receiver will both
be struck by lightning in the next year...

» Something that occurs with probability 2760 /sec is
expected to occur once every 100 billion years
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Bounded attackers?
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Consider brute-force search of key space; assume one key
can be tested per clock cycle

Desktop computer = 257 keys/year
Supercomputer = 280 keys/year
Supercomputer since Big Bang ~ 2112 keys

Therefore restricting attention to attackers who can try
2112 keys is fine!

Modern key space: 2128 keys or more...
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An Equivalent Definition of Perfect Secrecy

» We will give an alternate (but equivalent) definition of PS
» Using a randomized experiment

» That definition has a natural relaxation to
computational secrecy
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Perfect Indistinguishability (PI)

Fix message m € M and vary k € K to get PD over C
denoted D,,,.

Definition

Encryption scheme (Gen, Enc, Dec) with message space M
satisfies perfect indistinguishability if

Vmg #my € M : Dpy = Dy,

i.e. the distributions Dy, and D,,, are identical.
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Perfect Indistinguishability

Pl’iVKA,H

Let IT = (Gen, Enc, Dec) be an encryption scheme with
message space M, and A an adversary. Define a randomized
experiment PrivK 4 1r:

1. A outputs mg,m; € M

2. k < Gen, b + {0,1}, ¢ < Encg(my) (challenge)

3. b +— A(c)

4. Adversary A succeeds if b = b’, and we say the experiment

evaluates to 1 in this case
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Perfect Indistinguishability

IT is perfectly indistinguishable if for all attackers
(algorithms) A, it holds that

1
Pr[PrivKam = 1] = 5

Note
Easy to succeed with probability 1/2, just pick randomly b
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Perfect Indistinguishability

Theorem

II is perfectly indistinguishable <= 11 is perfectly secret

i.e. perfect indistinguishability is just an alternate definition of
perfect secrecy

11/21



Perfect Secrecy (recall)

Definition

Encryption scheme (Gen, Enc, Dec) with message space M and
ciphertext space C is perfectly secret if VPD over M,
Vm € M, and Ve € C with Pr[C = ¢] > 0, it holds that

Pr[M = m|C = ¢] = Pr[M = m]

i.e. the distribution of M does not change conditioned on
observing the ciphertext
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Sufficient and Necessary Condition for PS

Lemma

Encryption scheme (Gen, Enc, Dec) with message space M and
ciphertext space C is perfectly secret if and only if VPD over
M, Vm € M, and Ve € C , it holds that

Pr[C = ¢|M = m] = Pr[C = (]
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Sufficient and Necessary Condition for PS

Proof.
» (= ) let Pr[C = ¢|M = m] = Pr[C = (]
» By Bayes’s rule:

Pr[C = M = m] — Pr[M = m|C = ] Pr[C = ¢]

Pr[M = m)]
Py o Pr[M = m|C = c] Pr[C—=1¢]
- Pr[M = m)]

Pr[M = m] = Pr[M = m|C = ¢

» — (Gen, Enc,Dec) is PS
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Sufficient and Necessary Condition for PS
Proof.
» (<= ) let (Gen, Enc,Dec) be PS i.e.

Pr[M = m|C = c] = Pr[M = m)]

» By Bayes’s rule, analogously:

Pr[M = m|C = o = Pr[C = ¢|M = m] Pr[M = m)]

Pr[C = (]
- — _ Pr[C = c|M = m] Pr[M—=1m]
N N Pr[C = (]

» —> Pr[C =c] = Pr[C = ¢|M = m]
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Perfect Indistinguishability

Theorem

IT is perfectly indistinguishable <= II is perfectly secret
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Perfect Indistinguishability
Proof.

» ( = ) Il is perfectly secret
» By the PS Lemma:

vm € M,c € C: Pr[C = c¢c|M = m] = Pr[C = ]

» Therefore Vmg # m; € M.:

Pr[C = c|M = mo] = Pr[C = (]
Pr[C = ¢|M = m;] = Pr[C = (]

» — Pr[C = c|M = my] = Pr[C = c|M = m,]
» i.e. IT is perfectly indistinguishable
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Perfect Indistinguishability

Proof.

» ( <) Il is perfectly indistinguishable
» Fix mog e MandceC

» Denote
Pr[C =c|M =mo] =p

» Since IT is PI, Vm € M.:

Pr[C = c¢|M = m] =Pr[C =c|M =mp] =p
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Perfect Indistinguishability

Proof.
» By the law of total probability:

Pr[C =] = Z Pr[C = ¢|M = m] Pr[M = m]

memM
= Z p Pr[M = m)]
memM
=p Z Pr[M = m]
memM
=D

= Pr[C = c|M = my]

» — Pr[C = c] = Pr[C = ¢|M = my]
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Perfect Indistinguishability

Proof.

» Since mg — chosen arbitrary, by the PS Lemma:

Vm e M,c € C: Pr[C =c/M =m] =Pr[C = (]

» i.e. II is perfectly secret
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So far

» Introduced perfect secrecy (PS)

» Introduced OTP and proved that it satisfies PS
» Described the two limitations of the OTP

» Introduced perfect indistinguishability (PI)

>
| 2

Proved that PI is equivalent to PS
Next lecture: relax PI to computational secrecy (CS)
» a weaker, yet practical notion of security
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End

References: From the last paragraph of Pag. 30 until Pag. 32.
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