# Introduction to Modern Cryptography 

Michele Ciampi<br>(Slides courtesy of Prof. Jonathan Katz)

Lecture 03, part 2

## Perfect Secrecy

## Probability Review

## Random variable ( $R V$ )

Variable that takes on (discrete) values with certain probabilities

Probability distribution (PD)
A $P D$ for a $R V$ specifies the probabilities with which the variable takes on each possible value

- Each probability must be between $\mathbf{0}$ and $\mathbf{1}$
- The probabilities must sum to $\mathbf{1}$


## Probability Review

## Event

A particular occurrence in some experiment:
$-\operatorname{Pr}[\boldsymbol{E}]$ : probability of event $\boldsymbol{E}$

## Conditional probability

Probability that one event occurs, given that some other event occurred:

- $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A$ and $B] / \operatorname{Pr}[B] \equiv \operatorname{Pr}[A B] / \operatorname{Pr}[B]$


## Independence

Two $R V \boldsymbol{X}, \boldsymbol{Y}$ are independent if:

- $\forall x, y: \operatorname{Pr}[X=x \mid Y=y]=\operatorname{Pr}[X=x]$


## Probability Review

Law of total probability
Let $\boldsymbol{E}_{\mathbf{1}} \ldots \boldsymbol{E}_{\boldsymbol{n}}$ are a partition of all possibilities. Then $\forall \boldsymbol{A}$ :

$$
\begin{aligned}
\operatorname{Pr}[A] & =\sum_{i} \operatorname{Pr}\left[A E_{i}\right] \\
& =\sum_{i} \operatorname{Pr}\left[A \mid E_{i}\right] \operatorname{Pr}\left[E_{i}\right]
\end{aligned}
$$

Note
$\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A B] / \operatorname{Pr}[B] \Longrightarrow \operatorname{Pr}[A B]=\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]$

## Notation (recall)

- K (key space): set of all possible keys
- $\mathcal{M}$ (message space): set of all possible messages
- $\mathcal{C}$ (ciphertext space): set of all possible ciphertexts


## Probability Distributions

The random variable $\boldsymbol{M}$

- $\boldsymbol{M}$ is the $R V$ denoting the value of the message
- $\boldsymbol{M}$ ranges over $\boldsymbol{\mathcal { M }}$; context dependent
- Reflects the likelihood of different messages being sent, given the attacker's prior knowledge

Example

$$
\begin{aligned}
& \operatorname{Pr}[M=\text { attack today }]=0.7 \\
& \operatorname{Pr}\left[M=\text { don't }^{\prime} \text { attack }\right]=0.3
\end{aligned}
$$

## Probability Distributions

## The random variable $\boldsymbol{K}$

- $\boldsymbol{K}$ is the $R V$ denoting the key
- $\boldsymbol{K}$ ranges over $\mathcal{K}$
- Fix some encryption scheme (Gen, Enc, Dec)
- Gen defines a probability distribution for $\boldsymbol{K}$ :

$$
\operatorname{Pr}[\boldsymbol{K}=k]=\operatorname{Pr}[\text { Gen outputs key } k]
$$

## Probability Distributions

$R V \boldsymbol{M}$ and $\boldsymbol{K}$ are independent
Require that parties don't pick the key based on the message, or the message based on the key

## Probability distributions

The random variable $\boldsymbol{C}$

- Fix some encryption scheme (Gen, Enc, Dec), and some $P D$ for $\boldsymbol{M}$
- Consider the following (randomized) experiment:
- Generate a key $\boldsymbol{k}$ using Gen
- Choose a message $\boldsymbol{m}$, according to the given $P D$
- Compute $c \leftarrow \operatorname{Enc}_{\boldsymbol{k}}(\boldsymbol{m})$
- This defines a distribution on the ciphertext
- Let $\boldsymbol{C}$ be a $R V$ denoting the value of the ciphertext in this experiment


## Example 1: the $P D$ of $\boldsymbol{C}$ (Shift Cipher)

- $\forall k \in\{0 \ldots 25\} \Longrightarrow \operatorname{Pr}[K=k]=1 / 26$
- Let $|M|=\mathbf{2}, \boldsymbol{m} \in\{a, z\}$ and

$$
\begin{aligned}
& \operatorname{Pr}[M=a]=0.7 \\
& \operatorname{Pr}[M=z]=0.3
\end{aligned}
$$

- What is $\operatorname{Pr}[C=b]$ ?


## Example 1: the $P D$ of $\boldsymbol{C}$ (Shift Cipher)

What is $\operatorname{Pr}[\boldsymbol{C}=\boldsymbol{b}]$ ?
Either $\boldsymbol{M}=\boldsymbol{a}$ and $\boldsymbol{K}=\mathbf{1}$ or $\boldsymbol{M}=\boldsymbol{z}$ and $\boldsymbol{K}=\mathbf{2}$

$$
\begin{aligned}
& \operatorname{Pr}[C=b]= \\
& =\operatorname{Pr}[M=a] \operatorname{Pr}[K=1]+\operatorname{Pr}[M=z] \operatorname{Pr}[K=2] \\
& =0.7 \frac{1}{26}+0.3 \frac{1}{26}=\frac{1}{26}
\end{aligned}
$$

## Example 2: the $P D$ of $\boldsymbol{C}$ (Shift Cipher)

$$
\begin{aligned}
\text { Let }|M|= & 2, m \in\{\text { one, ten }\} \text { and } \\
& \operatorname{Pr}[M=\text { one }]=\operatorname{Pr}[M=\text { ten }]=1 / \mathbf{2}
\end{aligned}
$$

What is $\operatorname{Pr}[C=\mathrm{rqh}]$ ?

$$
\begin{aligned}
& \operatorname{Pr}[C=\mathrm{rqh}]= \\
& =\operatorname{Pr}[C=\mathrm{rqh} \mid M=\mathrm{one}] \operatorname{Pr}[M=\mathrm{one}] \\
& +\operatorname{Pr}[C=\operatorname{rqh} \mid M=\text { ten }] \operatorname{Pr}[M=\text { ten }] \\
& =\frac{1}{26} \frac{1}{2}+\mathbf{0} \frac{1}{2}=\frac{1}{52}
\end{aligned}
$$

## Perfect Secrecy (informal)

Regardless of any prior information the attacker has about the plaintext, the ciphertext should leak no additional information about the plaintext

- Attacker's information about the plaintext $=$ attacker-known distribution of $\boldsymbol{M}$
- Perfect secrecy means that observing the ciphertext should not change the attacker's knowledge about the distribution of $M$


## Perfect Secrecy (formal)

## Definition

Encryption scheme (Gen, Enc, Dec) with message space $\boldsymbol{\mathcal { M }}$ and ciphertext space $\mathcal{C}$ is perfectly secret if $\forall P D$ over $\mathcal{M}$, $\forall m \in \mathcal{M}$, and $\forall c \in \mathcal{C}$ with $\operatorname{Pr}[C=c]>0$, it holds that

$$
\operatorname{Pr}[M=m \mid C=c]=\operatorname{Pr}[M=m]
$$

i.e. the distribution of $\boldsymbol{M}$ does not change conditioned on observing the ciphertext

## Example 3: Perfect Secrecy (Shift Cipher)

- Let

$$
\operatorname{Pr}[M=\text { one }]=\operatorname{Pr}[M=\text { ten }]=1 / 2
$$

- Take $\boldsymbol{m}=$ ten and $\boldsymbol{c}=\mathbf{r q h}$. Then

$$
\operatorname{Pr}[M=\operatorname{ten} \mid C=\mathrm{rqh}]=0 \neq \operatorname{Pr}[M=\mathrm{ten}]
$$

- The $P D$ of $\boldsymbol{M}$ changes upon observing the ciphertext

Bayes's theorem

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}
$$

$$
\begin{aligned}
\operatorname{Pr}[A \mid B] & =\operatorname{Pr}[A B] / \operatorname{Pr}[B], \\
\operatorname{Pr}[B \mid A] & =\operatorname{Pr}[A B] / \operatorname{Pr}[A] \\
\Longrightarrow \operatorname{Pr}[A B] & =\operatorname{Pr}[B \mid A] \operatorname{Pr}[A], \\
\Longrightarrow \operatorname{Pr}[A \mid B] & =\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]} .
\end{aligned}
$$

Example 4: Perfect Secrecy and Shift Cipher

$$
\begin{aligned}
& \text { Let }|M|=\mathbf{3 , m} \in\{\mathbf{h i}, \mathbf{n o}, \text { in }\} \text { and } \\
& \qquad \begin{aligned}
& \operatorname{Pr}[M=\mathbf{h i}]=\mathbf{0 . 3} \\
& \operatorname{Pr}[M=\mathbf{n o}]=\mathbf{0 . 2} \\
& \operatorname{Pr}[M=\mathrm{in}]=\mathbf{0 . 5}
\end{aligned}
\end{aligned}
$$

What is $\operatorname{Pr}$ of $(M=\mathrm{hi})$ given $(C=\mathrm{xy})$ ?

$$
\begin{aligned}
& \operatorname{Pr}[M=\mathrm{hi} \mid C=\mathrm{xy}]= \\
& =\frac{\operatorname{Pr}[C=\mathrm{xy} \mid M=\mathrm{hi}] \operatorname{Pr}[M=\mathrm{hi}]}{\operatorname{Pr}[C=\mathrm{xy}]}
\end{aligned}
$$

## Example 4: Perfect Secrecy and Shift Cipher

$$
\operatorname{Pr}[C=\mathrm{xy} \mid M=\mathrm{hi}]=1 / \mathbf{2 6}
$$

By the law of total probability:

$$
\begin{aligned}
& \operatorname{Pr}[C=\mathrm{xy}]= \\
& \operatorname{Pr}[C=\mathrm{xy} \mid M=\mathrm{hi}] 0.3+ \\
& \operatorname{Pr}[C=\mathrm{xy} \mid M=\mathrm{no}] 0.2+ \\
& \operatorname{Pr}[C=\mathrm{xy} \mid M=\mathrm{in}] 0.5 \\
& \quad=(1 / 26) 0.3+(1 / 26) 0.2+00.5=1 / 52
\end{aligned}
$$

Example 4: Perfect Secrecy and Shift Cipher

$$
\begin{aligned}
& \operatorname{Pr}[M=\mathrm{hi} \mid C=\mathrm{xy}]= \\
& =\frac{\operatorname{Pr}[C=\mathrm{xy} \mid M=\mathrm{hi}] \operatorname{Pr}[M=\mathrm{hi}]}{\operatorname{Pr}[C=\mathrm{xy}]} \\
& =\frac{(1 / 26) 0.3}{(1 / 52)}=0.6 \\
& \neq \operatorname{Pr}[M=\mathrm{hi}]=0.3
\end{aligned}
$$

## Conclusion

- The Shift Cipher is not perfectly secret!
- How to construct a perfectly secret scheme?
- $\Longrightarrow$ next lecture!


## End

Reference: From Chapter 2 until (included) Pag. 30 of the book.

