Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 03, part 2

Perfect Secrecy

Probability Review

Random variable (RV)

Variable that takes on (discrete) values with certain probabilities

Probability distribution (PD)

A PD for a RV specifies the probabilities with which the variable takes on each possible value

- \blacktriangleright Each probability must be between $0 \ {\rm and} \ 1$
- ▶ The probabilities must sum to **1**

Probability Review

Event

A particular occurrence in some experiment:

•
$$\Pr[E]$$
: probability of event E

Conditional probability

Probability that one event occurs, given that some other event occurred:

▶
$$\Pr[A|B] = \Pr[A \text{ and } B]/\Pr[B] \equiv \Pr[AB]/\Pr[B]$$

Independence

Two $RV \boldsymbol{X}, \boldsymbol{Y}$ are **independent** if:

$$\blacktriangleright \ \forall \ x,y: \ \Pr[X=x|Y=y] = \Pr[X=x]$$

Probability Review

Law of total probability

Let $E_1 \ldots E_n$ are a partition of all possibilities. Then $\forall A$:

$$egin{aligned} \Pr[A] &= \sum_i \Pr[AE_i] \ &= \sum_i \Pr[A|E_i] \Pr[E_i] \end{aligned}$$

Note

 $\Pr[A|B] = \Pr[AB] / \Pr[B] \implies \Pr[AB] = \Pr[A|B] \Pr[B]$

Notation (recall)

- \mathcal{K} (key space): set of all possible keys
- \mathcal{M} (message space): set of all possible messages
- $\blacktriangleright \ {\cal C}$ (ciphertext space): set of all possible ciphertexts

Probability Distributions

The random variable \boldsymbol{M}

- ▶ M is the RV denoting the value of the message
- M ranges over \mathcal{M} ; context dependent
- Reflects the likelihood of different messages being sent, given the attacker's prior knowledge

Example

$$\Pr[M = \text{attack today}] = 0.7$$

 $\Pr[M = \text{don't attack}] = 0.3$

Probability Distributions

The random variable \boldsymbol{K}

- \blacktriangleright **K** is the *RV* denoting the key
- ▶ K ranges over K
- ► Fix some encryption scheme (Gen, Enc, Dec)
- Gen defines a probability distribution for K:

 $\Pr[K = k] = \Pr[\text{Gen outputs key } k]$

Probability Distributions

$RV \boldsymbol{M}$ and \boldsymbol{K} are independent

Require that parties don't pick the key based on the message, or the message based on the key

Probability distributions

The random variable C

- Fix some encryption scheme (Gen, Enc, Dec) , and some PD for M
- ► Consider the following (randomized) experiment:
 - Generate a key k using Gen
 - Choose a message m, according to the given PD
 - Compute $c \leftarrow \mathsf{Enc}_k(m)$
- ▶ This defines a distribution on the ciphertext
- \blacktriangleright Let ${\boldsymbol C}$ be a RV denoting the value of the ciphertext in this experiment

Example 1: the PD of C (Shift Cipher)

▶
$$\forall k \in \{0...25\} \implies \Pr[K = k] = 1/26$$

▶ Let $|M| = 2, m \in \{a, z\}$ and
 $\Pr[M = a] = 0.7$
 $\Pr[M = z] = 0.3$

• What is $\Pr[C = b]$?

Example 1: the PD of C (Shift Cipher)

What is $\Pr[C = b]$?

Either M = a and K = 1 or M = z and K = 2

$$\begin{aligned} &\Pr[C=b] = \\ &= \Pr[M=a] \,\Pr[K=1] + \Pr[M=z] \,\Pr[K=2] \\ &= 0.7 \, \frac{1}{26} + 0.3 \, \frac{1}{26} = \frac{1}{26} \end{aligned}$$

Example 2: the PD of C (Shift Cipher)

Let
$$|M| = 2$$
, $m \in \{\text{one, ten}\}$ and
 $\Pr[M = \text{one}] = \Pr[M = \text{ten}] = 1/2$

What is $\Pr[C = rqh]$?

$$\begin{aligned} &\Pr[C = \operatorname{rqh}] = \\ &= \Pr[C = \operatorname{rqh}|M = \operatorname{one}] \,\Pr[M = \operatorname{one}] \\ &+ \Pr[C = \operatorname{rqh}|M = \operatorname{ten}] \,\Pr[M = \operatorname{ten}] \\ &= \frac{1}{26} \, \frac{1}{2} + 0 \, \frac{1}{2} = \frac{1}{52} \end{aligned}$$

Perfect Secrecy (informal)

Regardless of any **prior** information the attacker has about the plaintext, the ciphertext should leak no **additional** information about the plaintext

- Attacker's information about the plaintext = attacker-known distribution of M
- Perfect secrecy means that observing the ciphertext should not change the attacker's knowledge about the distribution of M

Perfect Secrecy (formal)

Definition

Encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} and ciphertext space \mathcal{C} is **perfectly secret** if $\forall PD$ over \mathcal{M} , $\forall m \in \mathcal{M}$, and $\forall c \in \mathcal{C}$ with $\Pr[C = c] > 0$, it holds that

$$\Pr[M = m | C = c] = \Pr[M = m]$$

i.e. the distribution of \boldsymbol{M} does not change conditioned on observing the ciphertext

Example 3: Perfect Secrecy (Shift Cipher)

 \blacktriangleright Let

$$\Pr[M = \text{one}] = \Pr[M = \text{ten}] = 1/2$$

• Take
$$m = \text{ten}$$
 and $c = \text{rqh}$. Then

$$\Pr[M = \operatorname{ten}|C = \operatorname{rqh}] = 0 \neq \Pr[M = \operatorname{ten}]$$

• The PD of M changes upon observing the ciphertext

Bayes's theorem

$$\Pr[A|B] = rac{\Pr[B|A] \Pr[A]}{\Pr[B]}$$

$$\begin{split} \Pr[A|B] &= \Pr[AB] / \Pr[B] \;, \\ \Pr[B|A] &= \Pr[AB] / \Pr[A] \\ \implies \Pr[AB] &= \Pr[B|A] \Pr[A] \;, \\ \implies \Pr[A|B] &= \frac{\Pr[B|A] \Pr[A]}{\Pr[B]} \;. \end{split}$$

Example 4: Perfect Secrecy and Shift Cipher

Let
$$|M| = 3$$
, $m \in \{\text{hi, no, in}\}$ and
 $\Pr[M = \text{hi}] = 0.3$
 $\Pr[M = \text{no}] = 0.2$
 $\Pr[M = \text{in}] = 0.5$

What is \Pr of (M = hi) given (C = xy)?

$$\Pr[M = \operatorname{hi}|C = \operatorname{xy}] =$$

$$= \frac{\Pr[C = \operatorname{xy}|M = \operatorname{hi}] \Pr[M = \operatorname{hi}]}{\Pr[C = \operatorname{xy}]}$$

Example 4: Perfect Secrecy and Shift Cipher

 $\Pr[C = \mathrm{xy}|M = \mathrm{hi}] = 1/26$

By the law of total probability:

$$\begin{aligned} &\Pr[C = xy] = \\ &\Pr[C = xy|M = hi] \ 0.3+ \\ &\Pr[C = xy|M = no] \ 0.2+ \\ &\Pr[C = xy|M = in] \ 0.5 \\ &= (1/26) \ 0.3 + (1/26) \ 0.2 + 0 \ 0.5 = 1/52 \end{aligned}$$

Example 4: Perfect Secrecy and Shift Cipher

$$\begin{aligned} &\Pr[M = \text{hi}|C = \text{xy}] = \\ &= \frac{\Pr[C = \text{xy}|M = \text{hi}] \Pr[M = \text{hi}]}{\Pr[C = \text{xy}]} \\ &= \frac{(1/26) \ 0.3}{(1/52)} = 0.6 \\ &\neq \Pr[M = \text{hi}] = 0.3 \end{aligned}$$

Conclusion

- ► The Shift Cipher is not perfectly secret!
- ▶ How to construct a perfectly secret scheme?
- $\blacktriangleright \implies$ next lecture!

End

Reference: From Chapter 2 until (included) Pag. 30 of the book.