Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 6

Pseudo One-Time Pad

One-time Pad (recall)

Pseudo One-time Pad (POTP)

Pseudo One-time Pad

Definition

- Let G be a deterministic algorithm, with |G(k)| = p(|k|)
- $Gen(1^n)$: output uniform *n*-bit key *k*
 - Security parameter $n \implies$ message space $\{0,1\}^{p(n)}$
- $\mathsf{Enc}_k(m)$: output $G(k) \oplus m$
- $\mathsf{Dec}_k(c)$: output $G(k) \oplus c$
- ▶ Correctness the same as OTP

Security of POTP?

- ► Would like to be able to prove security
- \blacktriangleright Based on the assumption that G is a PRG

Modern Crypto = Definitions + Proofs + Assumptions

- ► We've **defined** computational secrecy
- ▶ Our goal is to **prove** that the pseudo OTP meets that definition
- ► We cannot prove this unconditionally
 - ▶ Beyond our current techniques...
 - ▶ Anyway, security clearly depends on G
- \blacktriangleright Can prove security based on the **assumption** that G is a pseudorandom generator

- Let G be an efficient, deterministic function with |G(k)| = p(|k|)
- ► For any efficient **D**, the probabilities that **D** outputs **1** in each case must be *close*

Proof by Reduction

- \blacktriangleright Assume G is a pseudorandom generator
- Assume toward a contradiction that there is an efficient attacker A who *breaks* POTP (as per the definition)
- \blacktriangleright Use A as a subroutine to build an efficient D that breaks pseudorandomness of G
- \blacktriangleright By assumption, no such D exists
- $\blacktriangleright \implies \text{No such } A \text{ can exist}$

Proof by Reduction

IMC Textbook 2nd ed. CRC Press 2015

Proof by Reduction (equivalent)

- \blacktriangleright Assume G is a pseudorandom generator
- \blacktriangleright Fix some arbitrary, efficient A attacking POTP
- \blacktriangleright Use A as a subroutine to build an efficient D attacking G
- ▶ Relate the distinguishing gap of D to the success probability of A
- \blacktriangleright By assumption, the distinguishing gap of D must be negligible
- $\blacktriangleright \implies$ Use this to bound the success probability of A

Security of POTP

Theorem

If G is a pseudorandom generator, then the pseudo one-time pad Π is EAV-secure (i.e. computationally indistinguishable)

The Proof

Proof by Reduction

- Implement D by using A as a subroutine
 - If A runs in polynomial time, then so does D
- \blacktriangleright Relate the success \mathbf{Pr} of \boldsymbol{D} and \boldsymbol{A}
- \blacktriangleright Prove that if A succeeds in breaking POTP then D succeeds in breaking G
- ▶ i.e. reduce the security of the POTP to the security of the underlying *G*

The Attacker \boldsymbol{A}

A attacks POTP via $\mathsf{PrivK}_{A,\Pi}(n)$

• $A(1^n)$ outputs m_0, m_1

$$\blacktriangleright \ k \leftarrow \mathsf{Gen}(1^n), \, b \leftarrow \{0,1\}, \, c \leftarrow \mathsf{Enc}_k(m_b)$$

- $\blacktriangleright \ b' \leftarrow A(c)$
- If b = b' return 1 (success)

If POTP is computationally ind. (EAV-secure) then

$$\Pr[\mathsf{PrivK}_{A,\Pi}(n)=1] \leq rac{1}{2} + \epsilon(n)$$

 \implies sufficient to prove the above inequality in order to prove the security of the POTP

The Attacker \boldsymbol{A}

A attacks OTP via $\mathsf{PrivK}_{A,\mathsf{OTP}}$ 1. A outputs m_0, m_1 2. $k \leftarrow \mathsf{Gen}, b \leftarrow \{0, 1\}, c \leftarrow \mathsf{Enc}_k(m_b)$ 3. $b' \leftarrow A(c)$ 4. If b = b' return 1 (success)

Since OTP is perfectly secret:

$$\Pr[\mathsf{PrivK}_{A,\mathsf{OTP}}=1]=rac{1}{2}$$

The Distinguisher \boldsymbol{D}

D attacks GSince G is a PRG (by assumption) $\implies \exists \epsilon(n) = \text{negl s.t.}$

$$|\mathrm{Pr}_{x\leftarrow U_n}[D(G(x))=1]-\mathrm{Pr}_{y\leftarrow U_{p(n)}}[D(y)=1]|\leq \epsilon(n)$$

World 0: D with a Truly Random Input

D(y) for uniform y

D simulates the $\mathsf{Priv}\mathsf{K}_{A,\mathsf{OTP}}$ experiment for A for a truly random input y:

- $A(1^n)$ outputs m_0, m_1
- ► Simulation:
 - 1. D generates $b \leftarrow \{0, 1\}$
 - 2. D computes $c = m_b \oplus y$
 - 3. D sends c to A

$$\blacktriangleright \ b' \leftarrow A(c)$$

• If b = b' then D(y) = 1

World 0: D with a Truly Random Input

Since y is truly random, from the viewpoint of A it is as if A is interacting with the OTP in World **0**. Therefore:

$$\Pr_{y \leftarrow U_{p(n)}}[D(y) = 1] = \Pr[\mathsf{PrivK}_{A,\mathsf{OTP}} = 1] = rac{1}{2}$$

World 0: A interacting with OTP

World 1: D with a Pseudorandom Input

D(G(x)) for pseudorandom G(x)

D simulates the $\mathsf{Priv}\mathsf{K}_{A,\Pi}(n)$ experiment for A for a pseudorandom input G(x):

•
$$A(1^n)$$
 outputs m_0, m_1

► Simulation:

1.
$$D$$
 generates $b \leftarrow \{0, 1\}$

2. **D** computes
$$c = m_b \oplus G(x)$$

3. D sends c to A

$$\blacktriangleright \ b' \leftarrow A(c)$$

• If
$$b = b'$$
 then $D(G(x)) = 1$

World 1: D with a Pseudorandom Input

Since G(x) is pseudorandom, from the viewpoint of A it is as if A is interacting with the POTP in World 1. Therefore:

 $\Pr_{x \leftarrow U_n}[D(G(x)) = 1] = \Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$

World 1: A interacting with POTP

Proof.

1) By the assumption that G is a PRG $\exists \epsilon(n) =$ negl:

 $|\mathrm{Pr}_{x\leftarrow U_n}[D(G(x))=1]-\mathrm{Pr}_{y\leftarrow U_{p(n)}}[D(y)=1]|\leq \epsilon(n)$

2) By the simulation of $\mathsf{Priv}\mathsf{K}_{A,\Pi}$ by D(y):

$$\mathrm{Pr}_{y \leftarrow U_{p(n)}}[D(y)=1] = \mathrm{Pr}[\mathsf{PrivK}_{A,\mathsf{OTP}}=1] = rac{1}{2}$$

3) By the simulation of $\mathsf{Priv}\mathsf{K}_{A,\Pi}(n)$ by D(G(x)):

$$\Pr_{x \leftarrow U_n}[D(G(x)) = 1] = \Pr[\mathsf{PrivK}_{A,\Pi}(n) = 1]$$

Therefore

$$\Pr[\mathsf{PrivK}_{A,\Pi}(n)=1] \leq rac{1}{2} + \epsilon(n)$$

 $\implies \Pi$ (i.e. POTP) is EAV-secure.

Summary

- ▶ Proof that the pseudo OTP is secure...
- We have a provably secure scheme, rather than just a heuristic construction!

Summary

- ▶ Proof that the pseudo OTP is secure...
- ► ...with some caveats
 - Assuming G is a pseudorandom generator
 - ▶ Relative to our definition
- ▶ The only ways the scheme can be broken are:
 - ▶ If a weakness is found in G
 - ► If the definition isn't sufficiently strong (next lecture!)

Have we gained anything?

- Yes! The POTP has a key shorter than the message *n* bits vs. *p(n)* bits
- $\blacktriangleright \implies \text{Solved one of the limitations of the OTP}$

- The fact that the parties internally generate a p(n)-bit temporary string to encrypt/decrypt is irrelevant
- ▶ The key is what the parties share in advance
- Parties do not store the p(n)-bit temporary value
- ▶ What about the other limitation? (next lectures)

End

Reference: Section 3.3.2