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Pseudo One-Time Pad
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One-time Pad (recall)
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Pseudo One-time Pad (POTP)
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Pseudo One-time Pad

Definition

I Let G be a deterministic algorithm, with |G(k)| = p(|k|)
I Gen(1n): output uniform n-bit key k

I Security parameter n =⇒ message space {0, 1}p(n)

I Enck(m): output G(k)⊕m
I Deck(c): output G(k)⊕ c
I Correctness – the same as OTP
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Security of POTP?

I Would like to be able to prove security

I Based on the assumption that G is a PRG
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Modern Crypto = Definitions + Proofs + Assumptions

I We’ve defined computational secrecy

I Our goal is to prove that the pseudo OTP meets that
definition

I We cannot prove this unconditionally
I Beyond our current techniques...
I Anyway, security clearly depends on G

I Can prove security based on the assumption that G is a
pseudorandom generator
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PRG Revisited

8 / 31



PRG Revisited
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PRG Revisited
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PRG Revisited
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PRG Revisited

I Let G be an efficient, deterministic function with
|G(k)| = p(|k|)

I For any efficient D, the probabilities that D outputs 1 in
each case must be close
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Proof by Reduction

I Assume G is a pseudorandom generator

I Assume toward a contradiction that there is an efficient
attacker A who breaks POTP (as per the definition)

I Use A as a subroutine to build an efficient D that breaks
pseudorandomness of G

I By assumption, no such D exists

I =⇒ No such A can exist
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Proof by Reduction

IMC Textbook 2nd ed. CRC Press 2015
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Proof by Reduction (equivalent)

I Assume G is a pseudorandom generator

I Fix some arbitrary, efficient A attacking POTP

I Use A as a subroutine to build an efficient D attacking G

I Relate the distinguishing gap of D to the success
probability of A

I By assumption, the distinguishing gap of D must be
negligible

I =⇒ Use this to bound the success probability of A
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Security of POTP

Theorem

If G is a pseudorandom generator, then the pseudo one-time
pad Π is EAV-secure (i.e. computationally indistinguishable)
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The Reduction
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The Reduction
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The Reduction
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The Proof

Proof by Reduction

I Implement D by using A as a subroutine
I If A runs in polynomial time, then so does D

I Relate the success Pr of D and A

I Prove that if A succeeds in breaking POTP then D
succeeds in breaking G

I i.e. reduce the security of the POTP to the security
of the underlying G
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The Attacker A

A attacks POTP via PrivKA,Π(n)

I A(1n) outputs m0,m1

I k← Gen(1n), b← {0, 1}, c← Enck(mb)

I b′ ← A(c)

I If b = b′ return 1 (success)

If POTP is computationally ind. (EAV-secure) then

Pr[PrivKA,Π(n) = 1] ≤
1

2
+ ε(n)

=⇒ sufficient to prove the above inequality in order to prove
the security of the POTP
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The Attacker A

A attacks OTP via PrivKA,OTP

1. A outputs m0,m1

2. k← Gen, b← {0, 1}, c← Enck(mb)

3. b′ ← A(c)

4. If b = b′ return 1 (success)

Since OTP is perfectly secret:

Pr[PrivKA,OTP = 1] =
1

2
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The Distinguisher D

D attacks G

Since G is a PRG (by assumption) =⇒ ∃ε(n) = negl s.t.

|Prx←Un[D(G(x)) = 1]− Pry←Up(n)
[D(y) = 1]| ≤ ε(n)
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World 0: D with a Truly Random Input

D(y) for uniform y

D simulates the PrivKA,OTP experiment for A for a truly
random input y:

I A(1n) outputs m0,m1

I Simulation:

1. D generates b← {0, 1}
2. D computes c = mb ⊕ y
3. D sends c to A

I b′ ← A(c)

I If b = b′ then D(y) = 1
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World 0: D with a Truly Random Input

Since y is truly random, from the viewpoint of A it is as if A is
interacting with the OTP in World 0. Therefore:

Pry←Up(n)
[D(y) = 1] = Pr[PrivKA,OTP = 1] =

1

2
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World 0: A interacting with OTP
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World 1: D with a Pseudorandom Input

D(G(x)) for pseudorandom G(x)

D simulates the PrivKA,Π(n) experiment for A for a
pseudorandom input G(x):

I A(1n) outputs m0,m1

I Simulation:

1. D generates b← {0, 1}
2. D computes c = mb ⊕G(x)
3. D sends c to A

I b′ ← A(c)

I If b = b′ then D(G(x)) = 1
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World 1: D with a Pseudorandom Input

Since G(x) is pseudorandom, from the viewpoint of A it is as if
A is interacting with the POTP in World 1. Therefore:

Prx←Un[D(G(x)) = 1] = Pr[PrivKA,Π(n) = 1]
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World 1: A interacting with POTP
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Proof.

1) By the assumption that G is a PRG ∃ε(n) = negl:

|Prx←Un[D(G(x)) = 1]− Pry←Up(n)
[D(y) = 1]| ≤ ε(n)

2) By the simulation of PrivKA,Π by D(y):

Pry←Up(n)
[D(y) = 1] = Pr[PrivKA,OTP = 1] =

1

2

3) By the simulation of PrivKA,Π(n) by D(G(x)):

Prx←Un[D(G(x)) = 1] = Pr[PrivKA,Π(n) = 1]

Therefore

Pr[PrivKA,Π(n) = 1] ≤
1

2
+ ε(n)

=⇒ Π (i.e. POTP) is EAV-secure.
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Summary

I Proof that the pseudo OTP is secure...

I We have a provably secure scheme, rather than just a
heuristic construction!
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Summary

I Proof that the pseudo OTP is secure...

I ...with some caveats
I Assuming G is a pseudorandom generator
I Relative to our definition

I The only ways the scheme can be broken are:
I If a weakness is found in G
I If the definition isn’t sufficiently strong (next lecture!)
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Have we gained anything?

I Yes! The POTP has a key shorter than the message
I n bits vs. p(n) bits

I =⇒ Solved one of the limitations of the OTP

I The fact that the parties internally generate a p(n)-bit
temporary string to encrypt/decrypt is irrelevant

I The key is what the parties share in advance

I Parties do not store the p(n)-bit temporary value

I What about the other limitation? (next lectures)
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End

Reference: Section 3.3.2
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