
Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 7, Part 2

1 / 29

Pseudorandom functions (PRF)
Pseudorandom permutations (PRP)

2 / 29

Random Function

I When we talk about a random function f , we mean

(A) Choosing f uniformly at random (and then fixing it) or
(B) Interacting with f

I In particular, once we choose f there is no more
randomness involved

I i.e. if we query f on the same input twice, we get the same
result

3 / 29

Choosing a Uniform Function

x f(x)

000 010

001 100

010 100

011 111

100 001

101 010

110 010

111 000

I Fn = all functions mapping {0, 1}n to
{0, 1}n

I How big is Fn?
I Can represent a function in Fn using
n2n bits

I =⇒ |Fn| = 2n2n

I n = 3 =⇒ # of entries: 23 = 8

4 / 29

Exercise

How many functions mapping {0, 1}n to {0, 1}m ?

1. m2n

2. 2n2m

3. m2n2n

4. 2m2n

5 / 29

Exercise

How many functions mapping {0, 1}n to {0, 1}m ?

1. m2n

2. 2n2m

3. m2n2n

4. 2m2n ←

5 / 29

Choosing a Uniform Function

Method A

Choose uniform f ∈ Fn

Method B

I For each x ∈ {0, 1}n, choose f(x) uniformly in {0, 1}n

I i.e. fill up the function table with uniform values

I Can view this as being done on-the-fly, as values are needed

6 / 29

Pseudorandom Functions (PRF)

I PRF generalizes the notion of PRG

I Instead of random-looking strings we have
random-looking functions

7 / 29

Pseudorandom Functions (PRF)

Informal

A pseudorandom function looks like a random (i.e. uniform)
function

I As for PRGs, makes no sense to talk about any fixed
function being pseudorandom

I We look instead at functions chosen according to some
distribution

I In particular, we look instead at keyed functions

8 / 29

Keyed Functions

Keyed function Fk

I Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient,
deterministic algorithm

I Define Fk(x) = F (k, x)

I The first input k is called the key

I F is efficient =⇒ F can be computed in poly time given
inputs k and x

9 / 29

Length-preserving Keyed Functions

Length-preserving keyed function Fk

The function Fk is length-preserving if:

I F (k, x) only defined if |k| = |x|
I and |F (k, x)| = |k| = |x|
I i.e. input/s and output of equal size

10 / 29

Uniform Keyed Functions

Choosing a uniform Fk

Choosing a uniform k ∈ {0, 1}n is equivalent to choosing the
function Fk : {0, 1}n → {0, 1}n

Fk induces a distribution on Fn

I Fk naturally induces a distribution on functions
from Fn

I For uniform k ∈ {0, 1}n, ∀f ∈ Fn:

Pr[f] =

{
2−n f ∈ {Fk}
0 otherwise

11 / 29

Note

I The number of functions in Fn is 2n2n

I {Fk}k∈{0,1}n is a subset of Fn

I The number of functions in {Fk}k∈{0,1}n is at most 2n

I {Fk} contains only a tiny fraction of Fn :

2n � 2n2n

12 / 29

Pseudorandom Functions

Definition

F is a pseudorandom function if Fk, for uniform key
k ∈ {0, 1}n, is indistinguishable from a uniform function
f ∈ Fn

13 / 29

Pseudorandom Functions

PRG

D is given access to a bit-string

|Prx←Un[D(G(x)) = 1]− Pry←Up(n)
[D(y) = 1]| ≤ ε(n)

PRF

D is given the description of f or Fk

|Prk←{0,1}n [DFk(·) = 1]− Prf←Fn [Df(·) = 1]| ≤ ε(n)

Problem

I Description of f is at least n2n bits long i.e. exponential

I D has polynomial capabilities

14 / 29

Pseudorandom Functions

PRG

D is given access to a bit-string

|Prx←Un[D(G(x)) = 1]− Pry←Up(n)
[D(y) = 1]| ≤ ε(n)

PRF

D is given the description of f or Fk

|Prk←{0,1}n [DFk(·) = 1]− Prf←Fn [Df(·) = 1]| ≤ ε(n)

Problem

I Description of f is at least n2n bits long i.e. exponential

I D has polynomial capabilities

14 / 29

Pseudorandom Functions

PRG

D is given access to a bit-string

|Prx←Un[D(G(x)) = 1]− Pry←Up(n)
[D(y) = 1]| ≤ ε(n)

PRF

D is given the description of f or Fk

|Prk←{0,1}n [DFk(·) = 1]− Prf←Fn [Df(·) = 1]| ≤ ε(n)

Problem

I Description of f is at least n2n bits long i.e. exponential

I D has polynomial capabilities

14 / 29

Pseudorandom Functions

PRF

D is given the description of oracle access to f or Fk

|Prk←{0,1}n [DFk(·) = 1]− Prf←Fn [Df(·) = 1]| ≤ ε(n)

Solution

I Now D can query f (resp. Fk) at most poly times

15 / 29

Pseudorandom Functions (PRFs)

Definition (refined)

F is a pseudorandom function if Fk, for uniform key
k ∈ {0, 1}n, is such that for all poly-time distinguishers D:

|Prk←{0,1}n [DFk(·) = 1]− Prf←Fn [Df(·) = 1]| ≤ ε(n)

D can query f (resp. Fk) on any input x at most poly times

16 / 29

PRF vs. RF

17 / 29

PRF vs. RF

Warning

Attacker (distingiusher DFk) does not have access to the key k

Meaningless to distinguish Fk from f for a known key

I Recall: Fk(x) is efficiently computable for any k, x

I D queries the oracle on x and gets a result y

I As D knows k (and x), it computes y′ = Fk(x)

I If y′ = y output 1; else 0

I =⇒ able to distinguish with Pr ≈ 1

Note

f ∈ Fn: Pr[f(x) = y′] = 1
2n

18 / 29

PRF vs. RF

Warning

Attacker (distingiusher DFk) does not have access to the key k

Meaningless to distinguish Fk from f for a known key

I Recall: Fk(x) is efficiently computable for any k, x

I D queries the oracle on x and gets a result y

I As D knows k (and x), it computes y′ = Fk(x)

I If y′ = y output 1; else 0

I =⇒ able to distinguish with Pr ≈ 1

Note

f ∈ Fn: Pr[f(x) = y′] = 1
2n

18 / 29

Is the Following PRF Secure?

Fk(x) = 0n

Distinguisher D

1. Query O on artbitrary x: y = O(x) (note: O = {f, Fk})
2. If y = 0n output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

19 / 29

Is the Following PRF Secure?

Fk(x) = 0n

Distinguisher D

1. Query O on artbitrary x: y = O(x) (note: O = {f, Fk})
2. If y = 0n output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

19 / 29

Is the Following PRF Secure?

Fk(x) = 0n

Distinguisher D

1. Query O on artbitrary x: y = O(x) (note: O = {f, Fk})
2. If y = 0n output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

19 / 29

Is the Following PRF Secure?

Fk(x) = k

Distinguisher D

1. Query O on artbitrary x1, x2: y1 = O(x1), y2 = O(x2)

2. If y1 = y2 output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

20 / 29

Is the Following PRF Secure?

Fk(x) = k

Distinguisher D

1. Query O on artbitrary x1, x2: y1 = O(x1), y2 = O(x2)

2. If y1 = y2 output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

20 / 29

Is the Following PRF Secure?

Fk(x) = k

Distinguisher D

1. Query O on artbitrary x1, x2: y1 = O(x1), y2 = O(x2)

2. If y1 = y2 output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

20 / 29

Is the Following PRF Secure?

Fk(x) = k ⊕ x

Distinguisher D

1. Query O on artbitrary x1, x2: y1 = O(x1), y2 = O(x2)

2. If (x1 ⊕ x2) = (y1 ⊕ y2) output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

21 / 29

Is the Following PRF Secure?

Fk(x) = k ⊕ x

Distinguisher D

1. Query O on artbitrary x1, x2: y1 = O(x1), y2 = O(x2)

2. If (x1 ⊕ x2) = (y1 ⊕ y2) output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

21 / 29

Is the Following PRF Secure?

Fk(x) = k ⊕ x

Distinguisher D

1. Query O on artbitrary x1, x2: y1 = O(x1), y2 = O(x2)

2. If (x1 ⊕ x2) = (y1 ⊕ y2) output 1; otherwise output 0

Analysis

|Prk←{0,1}n[DFk(·) = 1]− Prf←Fn[Df(·) = 1]|

= |1−
1

2n
| ≈ 1 ��≤ negl

21 / 29

Is the Following PRF Secure?

O = Fk

Pr[x1 ⊕ x2 = f(x1)⊕ f(x2)] = 1

O = f

Pr[x1 ⊕ x2 = f(x1)⊕ f(x2)] =

Pr[f(x2) = x1 ⊕ x2 ⊕ f(x1)] =
1

2n

22 / 29

PRFs vs. PRGs

PRF implies PRG

PRF F immediately implies PRG G:

I Define G(k) = Fk(0 . . . 0)|Fk(0 . . . 1)

I i.e. G(k) = Fk(0n)|Fk(1n)|Fk(2n)| . . .
where in denotes the n-bit encoding of i

I Try to prove it formally (exercise 3.14).

PRF is a PRG with random access

PRF can be viewed as a PRG with random access to
exponentially long output:

I The function Fk can be viewed as the n2n-bit string
Fk(0 . . . 0)| . . . |Fk(1 . . . 1)

23 / 29

Permutations

Permutation

I Let f ∈ Fn

I f is a permutation if it is a bijection
I This means that the inverse f−1 exists

I Let Pn ⊂ Fn be the set of permutations

I What is |Pn|?
|Pn| = 2n!

24 / 29

Keyed Permutations

Keyed Permutation

I Let F be a length-preserving, keyed function

I F is a keyed permutation if

1. Fk is a permutation for every k and
2. F−1

k , the inverse of Fk, is efficiently computable

25 / 29

Pseudorandom Permutations (PRPs)

Pseudorandom Permutation

I F is a pseudorandom permutation if Fk , for uniform
key k ∈ {0, 1}n, is indistinguishable from a uniform
permutation f ∈ Pn

I Even if attacker can query the function and its inverse

26 / 29

PRP is Indistinguishable from PRF

Fact

A random permutation is indistinguishable from a
random function for large enough n

=⇒ in practice, PRPs are also good PRFs

27 / 29

Do PRFs/PRPs exist?

I PRF is a stronger primitive than PRG
I PRF =⇒ PRG

I We don’t know if PRGs exist

I =⇒ we don’t know if PRFs exist

In practise

I Stream ciphers =⇒ PRGs

I Block ciphers =⇒ PRPs/PRFs

Next lecture

CPA-secure encryption using PRF/PRP

28 / 29

End

Reference: Section 3.5.1

29 / 29

