Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 7, Part 2

Pseudorandom functions (PRF) Pseudorandom permutations (PRP)

Random Function

- \blacktriangleright When we talk about a random function f, we mean
 - (A) Choosing \boldsymbol{f} uniformly at random (and then fixing it) $\boldsymbol{\mathrm{or}}$
 - (B) Interacting with f
- ► In particular, once we choose *f* there is no more randomness involved
- \blacktriangleright i.e. if we query \boldsymbol{f} on the same input twice, we get the same result

Choosing a Uniform Function

\boldsymbol{x}	f(x)
000	010
001	100
010	100
011	111
100	001
101	010
110	010
111	000

- $\mathcal{F}_n =$ all functions mapping $\{0,1\}^n$ to $\{0,1\}^n$
- How big is \mathcal{F}_n ?
 - Can represent a function in \$\mathcal{F}_n\$ using \$n2^n\$ bits

$$\blacktriangleright \implies |\mathcal{F}_n| = 2^{n2^n}$$

▶ $n = 3 \implies \#$ of entries: $2^3 = 8$

Exercise

How many functions mapping $\{0,1\}^n$ to $\{0,1\}^m$?

- 1. $m2^{n}$
- 2. **2**^{*n*2^{*m*}}
- 3. $m2^{n2^n}$ 4. 2^{m2^n}

Exercise

How many functions mapping $\{0,1\}^n$ to $\{0,1\}^m$?

- 1. *m*2^{*n*}
- 2. **2**^{*n*2^{*m*}}
- 3. $m2^{n2^n}$
- 4. $2^{m2^n} \leftarrow$

Choosing a Uniform Function

Method A
Choose uniform $f \in \mathcal{F}_n$

Method B

- For each $x \in \{0,1\}^n$, choose f(x) uniformly in $\{0,1\}^n$
- ▶ i.e. fill up the function table with uniform values
- ▶ Can view this as being done *on-the-fly*, as values are needed

Pseudorandom Functions (PRF)

- ▶ PRF generalizes the notion of PRG
- Instead of random-looking strings we have random-looking functions

Pseudorandom Functions (PRF)

Informal

A pseudorandom function **looks like** a random (i.e. uniform) function

- ► As for PRGs, makes no sense to talk about any fixed function being pseudorandom
- We look instead at functions chosen according to some distribution
- ▶ In particular, we look instead at **keyed functions**

Keyed Functions

Keyed function F_k

▶ Let $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ be an efficient, deterministic algorithm

• Define
$$F_k(x) = F(k,x)$$

- The first input k is called **the key**
- F is efficient \implies F can be computed in poly time given inputs k and x

Length-preserving Keyed Functions

Length-preserving keyed function F_k

The function F_k is length-preserving if:

• F(k,x) only defined if |k| = |x|

• and
$$|F(k,x)| = |k| = |x|$$

▶ i.e. input/s and output of equal size

Uniform Keyed Functions

Choosing a uniform F_k

Choosing a uniform $k \in \{0,1\}^n$ is equivalent to choosing the function $F_k: \{0,1\}^n \to \{0,1\}^n$

 F_k induces a distribution on \mathcal{F}_n

- ▶ F_k naturally induces a distribution on functions from \mathcal{F}_n
- ▶ For uniform $k \in \{0,1\}^n$, $\forall f \in \mathcal{F}_n$:

$$\Pr[f] = egin{cases} 2^{-n} & f \in \{F_k\} \ 0 & ext{otherwise} \end{cases}$$

Note

- ▶ The number of functions in \mathcal{F}_n is 2^{n2^n}
- $\{F_k\}_{k \in \{0,1\}^n}$ is a subset of \mathcal{F}_n
- The number of functions in $\{F_k\}_{k \in \{0,1\}^n}$ is at most 2^n
- $\{F_k\}$ contains only a tiny fraction of \mathcal{F}_n :

$$2^n \ll 2^{n2^n}$$

Definition

F is a pseudorandom function if F_k , for uniform key $k \in \{0,1\}^n$, is indistinguishable from a uniform function $f \in \mathcal{F}_n$

PRG

 \boldsymbol{D} is given access to a bit-string

 $|\mathrm{Pr}_{x\leftarrow U_n}[D(G(x))=1]-\mathrm{Pr}_{y\leftarrow U_{p(n)}}[D(y)=1]|\leq \epsilon(n)$

\mathbf{PRG}

 \boldsymbol{D} is given access to a bit-string

 $|\mathrm{Pr}_{x\leftarrow U_n}[D(G(x))=1]-\mathrm{Pr}_{y\leftarrow U_{p(n)}}[D(y)=1]|\leq \epsilon(n)$

\mathbf{PRF}

 \boldsymbol{D} is given the description of \boldsymbol{f} or $\boldsymbol{F_k}$

$$|\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1]-\mathrm{Pr}_{f\leftarrow\mathcal{F}_n}[D^{f(\cdot)}=1]|\leq\epsilon(n)$$

PRG

 \boldsymbol{D} is given access to a bit-string

 $|\mathrm{Pr}_{x\leftarrow U_n}[D(G(x))=1]-\mathrm{Pr}_{y\leftarrow U_{p(n)}}[D(y)=1]|\leq \epsilon(n)$

PRF

 \boldsymbol{D} is given the description of \boldsymbol{f} or $\boldsymbol{F_k}$

$$|\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1] - \mathrm{Pr}_{f\leftarrow\mathcal{F}_n}[D^{f(\cdot)}=1]| \le \epsilon(n)$$

Problem

- ▶ Description of f is at least $n2^n$ bits long i.e. exponential
- \blacktriangleright **D** has polynomial capabilities

PRF

D is given the description of oracle access to f or F_k

$$|\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1] - \mathrm{Pr}_{f\leftarrow\mathcal{F}_n}[D^{f(\cdot)}=1]| \le \epsilon(n)$$

Solution

Pseudorandom Functions (PRFs)

Definition (refined)

F is a pseudorandom function if F_k , for uniform key $k \in \{0,1\}^n$, is such that for all poly-time distinguishers D:

$$|\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1]-\mathrm{Pr}_{f\leftarrow\mathcal{F}_n}[D^{f(\cdot)}=1]|\leq\epsilon(n)$$

D can query f (resp. F_k) on any input x at most poly times

PRF vs. RF

PRF vs. RF

Warning

Attacker (distingiusher D^{F_k}) does not have access to the key k

Meaningless to distinguish F_k from f for a known key

- Recall: $F_k(x)$ is efficiently computable for any k, x
- D queries the oracle on x and gets a result y
- As D knows k (and x), it computes $y' = F_k(x)$

• If
$$y' = y$$
 output 1; else 0

• \implies able to distinguish with $\Pr \approx 1$

PRF vs. RF

Warning

Attacker (distingiusher D^{F_k}) does not have access to the key k

Meaningless to distinguish F_k from f for a known key

- Recall: $F_k(x)$ is efficiently computable for any k, x
- D queries the oracle on x and gets a result y
- As D knows k (and x), it computes $y' = F_k(x)$

• If
$$y' = y$$
 output 1; else 0

• \implies able to distinguish with $\Pr \approx 1$

Note

$$f \in \mathcal{F}_n$$
: $\Pr[f(x) = y'] = rac{1}{2^n}$

$$F_k(x) = 0^n$$

 $F_k(x) = 0^n$

Distinguisher \boldsymbol{D}

1. Query \mathcal{O} on artbitrary x: $y = \mathcal{O}(x)$ (note: $\mathcal{O} = \{f, F_k\}$)

2. If $y = 0^n$ output 1; otherwise output 0

 $F_k(x) = 0^n$

Distinguisher \boldsymbol{D}

1. Query \mathcal{O} on artbitrary $x: y = \mathcal{O}(x)$ (note: $\mathcal{O} = \{f, F_k\}$) 2. If $y = 0^n$ output 1; otherwise output 0

Analysis

$$egin{aligned} &|\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1]-\mathrm{Pr}_{f\leftarrow\mathcal{F}_n}[D^{f(\cdot)}=1]|\ &=|1-rac{1}{2^n}|pprox 1
ot\leq\mathrm{negl} \end{aligned}$$

$$F_k(x) = k$$

 $F_k(x) = k$

Distinguisher \boldsymbol{D}

1. Query \mathcal{O} on artbitrary x_1, x_2 : $y_1 = \mathcal{O}(x_1), y_2 = \mathcal{O}(x_2)$

2. If $y_1 = y_2$ output 1; otherwise output 0

 $F_k(x) = k$

Distinguisher \boldsymbol{D}

1. Query \mathcal{O} on artbitrary x_1, x_2 : $y_1 = \mathcal{O}(x_1), y_2 = \mathcal{O}(x_2)$ 2. If $y_1 = y_2$ output 1; otherwise output 0

Analysis

$$egin{aligned} &|\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1]-\mathrm{Pr}_{f\leftarrow\mathcal{F}_n}[D^{f(\cdot)}=1]|\ &=|1-rac{1}{2^n}|pprox 1
ot\leq\mathrm{negl} \end{aligned}$$

$$F_k(x) = k \oplus x$$

 $F_k(x) = k \oplus x$

Distinguisher \boldsymbol{D}

1. Query \mathcal{O} on artbitrary x_1, x_2 : $y_1 = \mathcal{O}(x_1), y_2 = \mathcal{O}(x_2)$

2. If $(x_1 \oplus x_2) = (y_1 \oplus y_2)$ output 1; otherwise output 0

 $F_k(x) = k \oplus x$

Distinguisher D

1. Query \mathcal{O} on artbitrary x_1, x_2 : $y_1 = \mathcal{O}(x_1), y_2 = \mathcal{O}(x_2)$ 2. If $(x_1 \oplus x_2) = (y_1 \oplus y_2)$ output 1; otherwise output 0

Analysis

$$egin{aligned} &|\mathrm{Pr}_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}=1]-\mathrm{Pr}_{f\leftarrow\mathcal{F}_n}[D^{f(\cdot)}=1]\ &=|1-rac{1}{2^n}|pprox 1
ot\leq\mathrm{negl} \end{aligned}$$

$$egin{aligned} \mathcal{O} &= F_k \ & ext{Pr}[x_1 \oplus x_2 = f(x_1) \oplus f(x_2)] = 1 \ \end{aligned}$$
 $egin{aligned} \mathcal{O} &= f \ & ext{Pr}[x_1 \oplus x_2 = f(x_1) \oplus f(x_2)] = \ & ext{Pr}[f(x_2) = x_1 \oplus x_2 \oplus f(x_1)] = rac{1}{2^n} \end{aligned}$

PRFs vs. PRGs

PRF implies PRG

PRF F immediately implies PRG G:

- Define $G(k) = F_k(0 \dots 0) | F_k(0 \dots 1)$
- ▶ i.e. $G(k) = F_k(0_n)|F_k(1_n)|F_k(2_n)|\dots$ where i_n denotes the *n*-bit encoding of *i*
- ► Try to prove it formally (exercise 3.14).

PRF is a PRG with random access

PRF can be viewed as a PRG with random access to exponentially long output:

▶ The function F_k can be viewed as the $n2^n$ -bit string $F_k(0...0)|...|F_k(1...1)$

Permutations

Permutation

▶ Let
$$f \in \mathcal{F}_n$$

• f is a *permutation* if it is a bijection

▶ This means that the inverse f^{-1} exists

• Let $\mathcal{P}_n \subset \mathcal{F}_n$ be the set of permutations

• What is
$$|\mathcal{P}_n|$$
?

$$|\mathcal{P}_n| = 2^n!$$

Keyed Permutations

Keyed Permutation

 \blacktriangleright Let ${\pmb F}$ be a length-preserving, keyed function

\blacktriangleright **F** is a keyed permutation if

- 1. F_k is a permutation for every k and
- 2. F_k^{-1} , the inverse of F_k , is efficiently computable

Pseudorandom Permutations (PRPs)

Pseudorandom Permutation

- F is a **pseudorandom permutation** if F_k , for uniform key $k \in \{0, 1\}^n$, is indistinguishable from a uniform permutation $f \in \mathcal{P}_n$
- Even if attacker can query the function **and its inverse**

PRP is Indistinguishable from PRF

Fact

A random permutation is indistinguishable from a random function for large enough n

\implies in practice, PRPs are also good PRFs

Do PRFs/PRPs exist?

▶ PRF is a stronger primitive than PRG

- \blacktriangleright PRF \implies PRG
- ▶ We don't know if PRGs exist
- $\blacktriangleright \implies$ we don't know if PRFs exist

In practise

- Stream ciphers \implies PRGs
- \blacktriangleright Block ciphers \implies PRPs/PRFs

Next lecture

 $\operatorname{CPA-secure}$ encryption using $\operatorname{PRF}/\operatorname{PRP}$

End

Reference: Section 3.5.1