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Introduction

▶ The introduction of Public-Key Encryption (PKE) marked a
revolution in cryptography.

▶ Parties can communicate securely without having agreed on
any secret information in advance!

▶ One party (receiver) generates a pair of keys (pk, sk) where
pk is the public key and sk is the private key.

▶ pk is used by a sender to encrypt a message. The receiver
uses sk to decrypt the ciphertext.



Introduction

Public key distribution
▶ Alice can send pk to Bob over an authenticated channel,

when she learns that Bob wants to communicate with her.
▶ Alice generates (pk, sk) in advance and disseminates pk by

publishing it on her webpage or placing it in a public directory.
▶ Public-key Infrastructure: a trusted certification authority

issues certificates (signatures) for everyone’s public key.
▶ In this lecture, we assume that senders are able to obtain a

legitimate copy of the receiver’s public key.



Comparison to Private-Key Encryption

▶ In public-key encryption, only the secrecy of the private key
sk is required.

▶ In public-key encryption different keys are used for encryption
and decryption (asymmetry). The roles of the sender and the
receiver are not interchangeable.

▶ Multiple senders can communicate privately with a single
receiver.

▶ Public-key encryption is significantly slower than private-key
encryption and implementing it for resource-constrained
devices like smartcards can be a challenge.



Syntax

Definition
A public-key encryption scheme is a triple of polynomial-time
algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen on input 1n outputs a pair
of keys (pk, sk), where pk is the public key and sk is the
private key.

2. The encryption algorithm Enc on input pk and a message M
from some message space (that may depend on pk) outputs a
ciphertext c. We write this as c← Encpk(M).

3. The decryption algorithm Dec on input sk and a ciphertext c
outputs a message M or a special symbol ⊥ denoting failure.
We write this as M := Decsk(c).



Correctness

For any message M , we have that Decsk(Encpk(M)) = M except
with negligible probability over (pk, sk) output by Gen(1n).



Security against Chosen-Plaintext Attacks

Given a public-key encryption scheme Π = (Gen,Enc,Dec) and an
adversary A consider the following experiment:
The eavesdropping indistinguishability experiment
PubKeav

A,Π(n):
1. Gen(1n) is run to obtain (pk, sk).
2. The adversary A is given pk, and outputs a pair of

equal-length messages M0,M1 in the message space.
3. A uniform bit b ∈ {0, 1} is chosen and then a ciphertext

c← Encpk(Mb) is computed and given to A. We call c the
challenge ciphertext.

4. A outputs a bit b′. The output of the experiment is 1 if b = b′

and 0 otherwise. If b = b′, we say that A succeeds.



Security against Chosen-Plaintext Attacks

Definition
A public-key encryption scheme Π = (Gen,Enc,Dec) has
indistinguishable encryptions under a chosen plaintext attack, or it
is CPA-secure, if for every PPT adversary A it holds that

Pr
[
PubKeav

A,Π(n) = 1
]
≤ 1

2
+ negl(n) .



El Gamal encryption

▶ In 1985, Taher El Gamal observed that the Diffie-Hellman
(DH) protocol could be adapted to give a public-key
encryption scheme.

▶ In DH protocol, Alice and Bob derive a shared key k which is
indistinguishable from a uniform element of a group G.

▶ Bob may use this shared key to encrypt a message M ∈ G by
sending k ·M to Alice.

▶ Alice can recover m (she knows k), while an eavesdropper
learns nothing about M .



El Gamal encryption
Let G be a group generation algorithm that on input 1n outputs a
description of a cyclic group G, its order q, and a generator g.

▶ Gen: on input 1n run G(1n) to obtain (G, q, g). Then choose a
uniform x ∈ Zq and compute h = gx. The public key is
pk = (G, q, g, h) and the private key is sk = (G, q, g, x). The
message space is G.

▶ Enc: on input a public key pk and a message M ∈ G, choose a
uniform y ∈ Zq and output the ciphertext

⟨gy, hy ·M⟩ .

▶ Dec: on input a private key sk and a ciphertext ⟨c1, c2⟩, output

M̂ := c2/c
x
1 .

Figure: The El Gamal encryption scheme.



Correctness of El Gamal

Let ⟨c1, c2⟩ = ⟨gy, hy ·M⟩ with h = gx. Then

M̂ :=
c2
cx1

=
hy ·M
(gy)x

=
(gx)y ·M

gxy
=

gxy ·M
gxy

= M .



Security of El Gamal

Lemma
Let G be a finite group and an arbitrary M ∈ G. Then choosing
uniform k ∈ G and setting k′ := k ·M gives the same distribution
for k′ as choosing uniform k′ ∈ G. Put differently, for any ĝ ∈ G

Pr
[
k

$← G : k ·M = ĝ
]
=

1

|G|
.

Proof.
Let ĝ ∈ G be arbitrary. Then

Pr
[
k

$← G : k ·M = ĝ
]
= Pr

[
k

$← G : k = ĝ ·M−1
]
.

Since k is uniform, the probability that k is equal to the fixed
element ĝ ·M−1 is 1

|G| .



Security of El Gamal

Theorem
If the DDH problem is hard relative to G, then the El Gamal
encryption scheme is CPA-secure.
Proof. Let Π denote the El Gamal encryption scheme. Let A be a
PPT adversary. We want to show that

Pr
[
PubKeav

A,Π(n) = 1
]
≤ 1

2
+ negl(n) .

Consider the modified “encryption scheme” Π̃, where Gen is as Π
but the encryption of M with respect to the public key ⟨G, q, g, h⟩
is done by choosing uniform y, z ∈ Zq and outputting the
ciphertext

⟨gy, gz ·M⟩ .



Security of El Gamal

By the Lemma, we have that the second component gz ·M is
uniformly distributed and independent of M . The first component
gy is also independent of M . Thus, the entire ciphertext of Π̃
contains no information about M . It follows that

Pr
[
PubKeav

A,Π̃
(n) = 1

]
=

1

2
.



Security of El Gamal

Now consider the following PPT algorithm D that attempts to
solve the DDH problem relative to G. D receives
(G, q, g, h1, h2, h3), where h1 = gx, h2 = gy and h3 is either gxy or
gz for uniform x, y, z.
Algorithm D:
The algorithm is given (G, q, g, h1, h2, h3) as input.

1. Set pk = ⟨G, q, g, h1⟩ and run A(pk) to obtain two messages
M0,M1 ∈ G.

2. Choose a uniform bit b and set c1 := h2 and c2 := h3 ·Mb.
3. Give the ciphertext ⟨c1, c2⟩ to A and obtain an output bit b′.

If b′ = b, then output 1; otherwise, output 0.



Security of El Gamal

Case 1: Say the input of D is generated by running G(1n) to
obtain (G, q, g), then choosing uniform x, y, z ∈ G and finally
setting h1 := gx, h2 := gy, and h3 := gz. Then, D runs A on
public key pk = ⟨G, q, g, gx⟩ and ciphertext

⟨c1, c2⟩ = ⟨gy, gz ·Mb⟩ .

Thus, the view of A as a subroutine of D is identical to the one in
experiment PubKeav

A,Π̃
(n). Since D outputs 1 exactly when the

output b′ of A is equal to b, we have that

Pr
[
D(G, q, g, gx, gy, gz) = 1

]
= Pr

[
PubKeav

A,Π̃
(n) = 1

]
=

1

2
.



Security of El Gamal

Case 2: Say the input of D is generated by running G(1n) to
obtain (G, q, g), then choosing uniform x, y, z ∈ G and finally
setting h1 := gx, h2 := gy, and h3 := gxy. Then, D runs A on
public key pk = ⟨G, q, g, gx⟩ and ciphertext

⟨c1, c2⟩ = ⟨gy, gxy ·Mb⟩ = ⟨gy, (gx)y ·Mb⟩ .

Thus, the view of A as a subroutine of D is identical to the one in
experiment PubKeav

A,Π(n). Since D outputs 1 exactly when the
output b′ of A is equal to b, we have that

Pr
[
D(G, q, g, gx, gy, gxy) = 1

]
= Pr

[
PubKeav

A,Π(n) = 1
]
.



Security of El Gamal

By the DDH hardness assumption, we have that

negl(n) ≥

≥
∣∣∣Pr

[
D(G, q, g, gx, gy, gxy) = 1

]
− Pr

[
D(G, q, g, gx, gy, gz) = 1

]∣∣∣ =
=
∣∣∣Pr

[
PubKeav

A,Π(n) = 1
]
− 1

2

∣∣∣,
from where we get that Pr

[
PubKeav

A,Π(n) = 1
]
≤ 1

2 + negl(n).



Security against Chosen-Ciphertext Attacks
Given a public-key encryption scheme Π = (Gen,Enc,Dec) and an
adversary A consider the following experiment:
The CCA indistinguishability experiment PubKcca

A,Π(n):
1. Gen(1n) is run to obtain (pk, sk).
2. The adversary A is given pk and access to a decryption oracle

Decsk(·). It outputs a pair of equal-length messages M0,M1

in the message space.
3. A uniform bit b ∈ {0, 1} is chosen and then a ciphertext

c← Encpk(Mb) is computed and given to A. We call c the
challenge ciphertext.

4. A continues to interact with the decryption oracle, but may
not request the decryption of c itself. Finally, A outputs a bit
b′.

5. The output of the experiment is 1 if b = b′ and 0 otherwise. If
b = b′, we say that A succeeds.



Security against Chosen-Ciphertext Attacks

Definition
A public-key encryption scheme Π = (Gen,Enc,Dec) has
indistinguishable encryptions under a chosen ciphertext attack, or
it is CCA-secure, if for every PPT adversary A it holds that

Pr
[
PubKcca

A,Π(n) = 1
]
≤ 1

2
+ negl() .



Malleability of El Gamal

An encryption scheme is malleable if given a ciphertext c that is an
encryption of an unknown message M , it is possible to generate a
modified ciphertext c′ that is an encryption of a message M ′

having some known relation to M .



Malleability of El Gamal

▶ In El Gamal, an adversary that intercepts a ciphertext
c = ⟨c1, c2⟩ can construct a ciphertext c′ = ⟨c1, c′2⟩, where
c′2 = α · c2.

▶ It is easy to check that if c is an encryption of a message M ,
then c′ is a valid encryption of the message α ·M !

▶ El Gamal is malleable, so it is vulnerable against
chosen-ciphertext attacks (Exercise!).



The RSA encryption scheme

Theorem
Let p, q be primes. Let N := pq and ϕ(N) = (p− 1)(q − 1). For
integer e > 0 define fe : Z∗

N −→ Z∗
N by

fe(x) = xe mod N .

If e is relatively prime to ϕ(N), then fe is a permutation.
Moreover, if d = e−1 mod ϕ(N), then fd is the inverse of fe.



The RSA encryption scheme

▶ Gen: On input 1n choose two n-bit random primes p and q.
Compute N = pq and ϕ(N) = (p− 1)(q − 1). Choose e > 1
such that gcd(e, ϕ(N)) = 1. Compute d := e−1 mod ϕ(N).
Return (N, e) as the public key and (N, d) as the private key.

▶ Enc: on input a public key pk = (N, e) and a message M ∈ Z∗
N ,

compute the ciphertext

c = Me mod N .

▶ Dec: on input a private key sk = (N, d) and a ciphertext
c ∈ Z∗

N , compute the message

M = cd mod N .

Figure: The RSA encryption scheme.



Correctness of RSA

Let c = M e mod N . Then,

M̂ := cd mod N = (M e)d mod N = M.

This because fd(x) = xd mod N is the inverse of
fe(x) = xe mod N .



Security of RSA

▶ Factoring is at least as hard (but not known to be equivalent)
as breaking RSA.

▶ RSA is deterministic, therefore it is not CPA-secure.



End

References: Sec 11.1, 11.2.1, 11.4.1, Sec 11.4.1, 11.3.2 (only
Definition 11.13), 11.5.1 (up to Construction 11.26)


