Public-key Encryption and the El Gamal and RSA Encryption Schemes

Michele Ciampi

Introduction to Modern Cryptography, Lecture 14

Introduction

- The introduction of Public-Key Encryption (PKE) marked a revolution in cryptography.
- Parties can communicate securely without having agreed on any secret information in advance!
- One party (receiver) generates a pair of keys (pk, sk) where pk is the public key and sk is the private key.
- *pk* is used by a *sender* to encrypt a message. The receiver uses *sk* to decrypt the ciphertext.

Introduction

Public key distribution

- Alice can send pk to Bob over an authenticated channel, when she learns that Bob wants to communicate with her.
- Alice generates (pk, sk) in advance and disseminates pk by publishing it on her webpage or placing it in a public directory.
- Public-key Infrastructure: a trusted certification authority issues certificates (signatures) for everyone's public key.
- In this lecture, we assume that senders are able to obtain a legitimate copy of the receiver's public key.

Comparison to Private-Key Encryption

- In public-key encryption, only the secrecy of the private key sk is required.
- In public-key encryption different keys are used for encryption and decryption (asymmetry). The roles of the sender and the receiver are not interchangeable.
- Multiple senders can communicate privately with a single receiver.
- Public-key encryption is significantly slower than private-key encryption and implementing it for resource-constrained devices like smartcards can be a challenge.

Syntax

Definition

A *public-key encryption scheme* is a triple of polynomial-time algorithms (Gen, Enc, Dec) such that:

- 1. The key-generation algorithm Gen on input 1^n outputs a pair of keys (pk, sk), where pk is the public key and sk is the private key.
- 2. The encryption algorithm Enc on input pk and a message M from some message space (that may depend on pk) outputs a ciphertext c. We write this as $c \leftarrow \text{Enc}_{pk}(M)$.
- 3. The decryption algorithm Dec on input sk and a ciphertext c outputs a message M or a special symbol \perp denoting failure. We write this as $M := \text{Dec}_{sk}(c)$.

Correctness

For any message M, we have that $\text{Dec}_{sk}(\text{Enc}_{pk}(M)) = M$ except with negligible probability over (pk, sk) output by $\text{Gen}(1^n)$.

Security against Chosen-Plaintext Attacks

Given a public-key encryption scheme $\Pi=({\rm Gen},{\rm Enc},{\rm Dec})$ and an adversary ${\cal A}$ consider the following experiment:

The eavesdropping indistinguishability experiment $\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)$:

- 1. $\operatorname{Gen}(1^n)$ is run to obtain (pk, sk).
- 2. The adversary A is given pk, and outputs a pair of equal-length messages M_0, M_1 in the message space.
- 3. A uniform bit $b \in \{0, 1\}$ is chosen and then a ciphertext $c \leftarrow \text{Enc}_{pk}(M_b)$ is computed and given to \mathcal{A} . We call c the *challenge ciphertext*.
- 4. A outputs a bit b'. The output of the experiment is 1 if b = b'and 0 otherwise. If b = b', we say that A succeeds.

Security against Chosen-Plaintext Attacks

Definition

A public-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosen plaintext attack, or it is *CPA-secure*, if for every PPT adversary A it holds that

$$\Pr\left[\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n) \; .$$

El Gamal encryption

- In 1985, Taher El Gamal observed that the Diffie-Hellman (DH) protocol could be adapted to give a public-key encryption scheme.
- ▶ In DH protocol, Alice and Bob derive a shared key k which is indistinguishable from a uniform element of a group G.
- ▶ Bob may use this shared key to encrypt a message $M \in \mathbb{G}$ by sending $k \cdot M$ to Alice.
- Alice can recover m (she knows k), while an eavesdropper learns nothing about M.

El Gamal encryption

Let \mathcal{G} be a group generation algorithm that on input 1^n outputs a description of a cyclic group \mathbb{G} , its order q, and a generator g.

- Gen: on input 1^n run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) . Then choose a uniform $x \in \mathbb{Z}_q$ and compute $h = g^x$. The public key is $pk = (\mathbb{G}, q, g, h)$ and the private key is $sk = (\mathbb{G}, q, g, x)$. The message space is \mathbb{G} .
- ▶ Enc: on input a public key pk and a message $M \in \mathbb{G}$, choose a uniform $y \in \mathbb{Z}_q$ and output the ciphertext

 $\langle g^y, h^y \cdot M \rangle$.

• Dec: on input a private key sk and a ciphertext $\langle c_1, c_2 \rangle$, output

$$\hat{M} := c_2/c_1^x \ .$$

Figure: The El Gamal encryption scheme.

Correctness of El Gamal

Let
$$\langle c_1, c_2 \rangle = \langle g^y, h^y \cdot M \rangle$$
 with $h = g^x$. Then
 $\hat{M} := \frac{c_2}{c_1^x} = \frac{h^y \cdot M}{(g^y)^x} = \frac{(g^x)^y \cdot M}{g^{xy}} = \frac{g^{xy} \cdot M}{g^{xy}} = M$.

Lemma

Let \mathbb{G} be a finite group and an arbitrary $M \in \mathbb{G}$. Then choosing uniform $k \in \mathbb{G}$ and setting $k' := k \cdot M$ gives the same distribution for k' as choosing uniform $k' \in \mathbb{G}$. Put differently, for any $\hat{g} \in \mathbb{G}$

$$\Pr\left[k \stackrel{\$}{\leftarrow} \mathbb{G} : k \cdot M = \hat{g}\right] = \frac{1}{|\mathbb{G}|}$$

Proof.

Let $\hat{g} \in \mathbb{G}$ be arbitrary. Then

$$\Pr\left[k \stackrel{\$}{\leftarrow} \mathbb{G} : k \cdot M = \hat{g}\right] = \Pr\left[k \stackrel{\$}{\leftarrow} \mathbb{G} : k = \hat{g} \cdot M^{-1}\right].$$

Since k is uniform, the probability that k is equal to the fixed element $\hat{g}\cdot M^{-1}$ is $\frac{1}{|\mathbb{G}|}.$

Theorem

If the DDH problem is hard relative to \mathfrak{G} , then the El Gamal encryption scheme is CPA-secure.

Proof. Let Π denote the El Gamal encryption scheme. Let \mathcal{A} be a PPT adversary. We want to show that

$$\Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(n) \;.$$

Consider the modified "encryption scheme" $\tilde{\Pi}$, where Gen is as Π but the encryption of M with respect to the public key $\langle \mathbb{G}, q, g, h \rangle$ is done by choosing uniform $y, z \in \mathbb{Z}_q$ and outputting the ciphertext

$$\langle g^y, g^z \cdot M \rangle$$
.

By the Lemma, we have that the second component $g^z \cdot M$ is uniformly distributed and independent of M. The first component g^y is also independent of M. Thus, the entire ciphertext of $\tilde{\Pi}$ contains no information about M. It follows that

$$\Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A},\tilde{\Pi}}(n) = 1\right] = \frac{1}{2} \; .$$

Now consider the following PPT algorithm \mathcal{D} that attempts to solve the DDH problem relative to \mathcal{G} . \mathcal{D} receives $(\mathbb{G}, q, g, h_1, h_2, h_3)$, where $h_1 = g^x$, $h_2 = g^y$ and h_3 is either g^{xy} or g^z for uniform x, y, z.

Algorithm \mathcal{D} :

The algorithm is given $(\mathbb{G}, q, g, h_1, h_2, h_3)$ as input.

- 1. Set $pk = \langle \mathbb{G}, q, g, h_1 \rangle$ and run $\mathcal{A}(pk)$ to obtain two messages $M_0, M_1 \in \mathbb{G}$.
- 2. Choose a uniform bit b and set $c_1 := h_2$ and $c_2 := h_3 \cdot M_b$.
- 3. Give the ciphertext $\langle c_1, c_2 \rangle$ to \mathcal{A} and obtain an output bit b'. If b' = b, then output 1; otherwise, output 0.

Case 1: Say the input of \mathcal{D} is generated by running $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) , then choosing uniform $x, y, z \in \mathbb{G}$ and finally setting $h_1 := g^x, h_2 := g^y$, and $h_3 := g^z$. Then, \mathcal{D} runs \mathcal{A} on public key $pk = \langle \mathbb{G}, q, g, g^x \rangle$ and ciphertext

$$\langle c_1, c_2 \rangle = \langle g^y, g^z \cdot M_b \rangle .$$

Thus, the view of \mathcal{A} as a subroutine of \mathcal{D} is identical to the one in experiment $\text{PubK}_{\mathcal{A},\tilde{\Pi}}^{\text{eav}}(n)$. Since \mathcal{D} outputs 1 exactly when the output b' of \mathcal{A} is equal to b, we have that

$$\Pr\left[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^z) = 1\right] = \Pr\left[\mathsf{PubK}_{\mathcal{A}, \tilde{\Pi}}^{\mathsf{eav}}(n) = 1\right] = \frac{1}{2}$$

Case 2: Say the input of \mathcal{D} is generated by running $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) , then choosing uniform $x, y, z \in \mathbb{G}$ and finally setting $h_1 := g^x, h_2 := g^y$, and $h_3 := g^{xy}$. Then, \mathcal{D} runs \mathcal{A} on public key $pk = \langle \mathbb{G}, q, g, g^x \rangle$ and ciphertext

$$\langle c_1, c_2 \rangle = \langle g^y, g^{xy} \cdot M_b \rangle = \langle g^y, (g^x)^y \cdot M_b \rangle$$

Thus, the view of \mathcal{A} as a subroutine of \mathcal{D} is identical to the one in experiment $\text{PubK}_{\mathcal{A},\Pi}^{\text{eav}}(n)$. Since \mathcal{D} outputs 1 exactly when the output b' of \mathcal{A} is equal to b, we have that

$$\Pr\left[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1\right] = \Pr\left[\mathsf{PubK}^{\mathsf{eav}}_{\mathcal{A}, \Pi}(n) = 1\right].$$

By the DDH hardness assumption, we have that

$$\begin{split} & \mathsf{negl}(n) \geq \\ \geq \Big| \Pr\left[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^{xy}) = 1\right] - \Pr\left[\mathcal{D}(\mathbb{G}, q, g, g^x, g^y, g^z) = 1\right] \Big| = \\ & = \Big| \Pr\left[\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n) = 1\right] - \frac{1}{2} \Big|, \end{split}$$

from where we get that $\Pr\left[\mathsf{PubK}_{\mathcal{A},\Pi}^{\mathsf{eav}}(n)=1\right] \leq \frac{1}{2} + \mathsf{negl}(n).$

Security against Chosen-Ciphertext Attacks

Given a public-key encryption scheme $\Pi=({\rm Gen},{\rm Enc},{\rm Dec})$ and an adversary ${\cal A}$ consider the following experiment:

The CCA indistinguishability experiment $\mathsf{PubK}_{\mathcal{A}.\Pi}^{\mathsf{cca}}(n)$:

- 1. $\operatorname{Gen}(1^n)$ is run to obtain (pk, sk).
- 2. The adversary \mathcal{A} is given pk and access to a decryption oracle $\text{Dec}_{sk}(\cdot)$. It outputs a pair of equal-length messages M_0, M_1 in the message space.
- 3. A uniform bit $b \in \{0, 1\}$ is chosen and then a ciphertext $c \leftarrow \operatorname{Enc}_{pk}(M_b)$ is computed and given to \mathcal{A} . We call c the challenge ciphertext.
- 4. \mathcal{A} continues to interact with the decryption oracle, but may not request the decryption of c itself. Finally, \mathcal{A} outputs a bit b'.
- 5. The output of the experiment is 1 if b = b' and 0 otherwise. If b = b', we say that \mathcal{A} succeeds.

Security against Chosen-Ciphertext Attacks

Definition

A public-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosen ciphertext attack, or it is *CCA-secure*, if for every PPT adversary A it holds that

$$\Pr\left[\mathsf{PubK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) = 1\right] \leq \frac{1}{2} + \mathsf{negl}() \; .$$

An encryption scheme is *malleable* if given a ciphertext c that is an encryption of an unknown message M, it is possible to generate a modified ciphertext c' that is an encryption of a message M' having some known relation to M.

Malleability of El Gamal

- ▶ In El Gamal, an adversary that intercepts a ciphertext $c = \langle c_1, c_2 \rangle$ can construct a ciphertext $c' = \langle c_1, c'_2 \rangle$, where $c'_2 = \alpha \cdot c_2$.
- lt is easy to check that if c is an encryption of a message M, then c' is a valid encryption of the message $\alpha \cdot M!$
- El Gamal is malleable, so it is vulnerable against chosen-ciphertext attacks (Exercise!).

The RSA encryption scheme

Theorem

Let p, q be primes. Let N := pq and $\phi(N) = (p-1)(q-1)$. For integer e > 0 define $f_e : \mathbb{Z}_N^* \longrightarrow \mathbb{Z}_N^*$ by

$$f_e(x) = x^e \mod N \; .$$

If e is relatively prime to $\phi(N)$, then f_e is a permutation. Moreover, if $d = e^{-1} \mod \phi(N)$, then f_d is the inverse of f_e .

The RSA encryption scheme

- Gen: On input 1ⁿ choose two n-bit random primes p and q. Compute N = pq and φ(N) = (p − 1)(q − 1). Choose e > 1 such that gcd(e, φ(N)) = 1. Compute d := e⁻¹ mod φ(N). Return (N, e) as the public key and (N, d) as the private key.
- Enc: on input a public key pk = (N, e) and a message $M \in \mathbb{Z}_N^*$, compute the ciphertext

$$c = M^e \mod N$$
 .

▶ Dec: on input a private key sk = (N, d) and a ciphertext $c \in \mathbb{Z}_N^*$, compute the message

 $M = c^d \bmod N .$

Figure: The RSA encryption scheme.

Let $c = M^e \mod N$. Then,

$$\hat{M} := c^d \mod N = (M^e)^d \mod N = M.$$

This because $f_d(x) = x^d \mod N$ is the inverse of $f_e(x) = x^e \mod N$.

Security of RSA

- Factoring is at least as hard (but not known to be equivalent) as breaking RSA.
- RSA is deterministic, therefore it is not CPA-secure.

End

References: Sec 11.1, 11.2.1, 11.4.1, Sec 11.4.1, 11.3.2 (only Definition 11.13), 11.5.1 (up to Construction 11.26)