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Introduction

» The introduction of Public-Key Encryption (PKE) marked a
revolution in cryptography.

» Parties can communicate securely without having agreed on
any secret information in advance!

» One party (receiver) generates a pair of keys (pk, sk) where
pk is the public key and sk is the private key.

» pk is used by a sender to encrypt a message. The receiver
uses sk to decrypt the ciphertext.



Introduction

Public key distribution

P Alice can send pk to Bob over an authenticated channel,
when she learns that Bob wants to communicate with her.

» Alice generates (pk, sk) in advance and disseminates pk by
publishing it on her webpage or placing it in a public directory.

» Public-key Infrastructure: a trusted certification authority
issues certificates (signatures) for everyone's public key.

» In this lecture, we assume that senders are able to obtain a
legitimate copy of the receiver’s public key.



Comparison to Private-Key Encryption

» In public-key encryption, only the secrecy of the private key
sk is required.

» In public-key encryption different keys are used for encryption
and decryption (asymmetry). The roles of the sender and the
receiver are not interchangeable.

» Multiple senders can communicate privately with a single
receiver.

» Public-key encryption is significantly slower than private-key
encryption and implementing it for resource-constrained
devices like smartcards can be a challenge.



Syntax

Definition
A public-key encryption scheme is a triple of polynomial-time
algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen on input 1" outputs a pair
of keys (pk, sk), where pk is the public key and sk is the
private key.

2. The encryption algorithm Enc on input pk and a message M
from some message space (that may depend on pk) outputs a
ciphertext c¢. We write this as ¢ <= Encyy(M).

3. The decryption algorithm Dec on input sk and a ciphertext ¢
outputs a message M or a special symbol L denoting failure.
We write this as M := Decg(c).



Correctness

For any message M, we have that Decg(Ency,(M)) = M except
with negligible probability over (pk, sk) output by Gen(1™).



Security against Chosen-Plaintext Attacks

Given a public-key encryption scheme II = (Gen, Enc, Dec) and an
adversary A consider the following experiment:

The eavesdropping indistinguishability experiment
PubK5Ti(n):
1. Gen(1™) is run to obtain (pk, sk).
2. The adversary A is given pk, and outputs a pair of
equal-length messages My, M7 in the message space.

3. A uniform bit b € {0, 1} is chosen and then a ciphertext
c < Encpi(My) is computed and given to A. We call ¢ the
challenge ciphertext.

4. A outputs a bit &’. The output of the experiment is 1 if b = ¢/
and 0 otherwise. If b = b/, we say that A succeeds.



Security against Chosen-Plaintext Attacks

Definition

A public-key encryption scheme IT = (Gen, Enc, Dec) has
indistinguishable encryptions under a chosen plaintext attack, or it
is CPA-secure, if for every PPT adversary A it holds that

1
Pr [PubK§Y;(n) = 1] < 3 + negl(n) .



El Gamal encryption

» In 1985, Taher El Gamal observed that the Diffie-Hellman
(DH) protocol could be adapted to give a public-key
encryption scheme.

» In DH protocol, Alice and Bob derive a shared key k which is
indistinguishable from a uniform element of a group G.

» Bob may use this shared key to encrypt a message M € G by
sending k - M to Alice.

» Alice can recover m (she knows k), while an eavesdropper
learns nothing about M.



El Gamal encryption

Let G be a group generation algorithm that on input 1" outputs a
description of a cyclic group G, its order ¢, and a generator g.

» Gen: on input 1™ run §(1™) to obtain (G, q,g). Then choose a
uniform x € Z, and compute h = g”. The public key is

pk = (G, q,g,h) and the private key is sk = (G, q,g,z). The
message space is G.

» Enc: on input a public key pk and a message M € G, choose a
uniform y € Z, and output the ciphertext

(¢¥,hY - M) .
» Dec: on input a private key sk and a ciphertext {cy, ca), output

M :=cy/ct .

Figure: The El Gamal encryption scheme.



Correctness of El Gamal

Let (c1,c2) = (g¥, hY - M) with h = g®. Then
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Security of EI Gamal

Lemma

Let G be a finite group and an arbitrary M € G. Then choosing

uniform k € G and setting k' := k - M gives the same distribution

for k' as choosing uniform k' € G. Put differently, for any g € G
1

Pr[kiG:k.M:g]:@.

Proof.
Let § € G be arbitrary. Then

PrikdGik-M=g)=Pr[k&G:ik=g-M"].

Since k is uniform, the probability that & is equal to the fixed

element §- M~ is ‘Tl;'. O



Security of EI Gamal

Theorem
If the DDH problem is hard relative to G, then the El Gamal
encryption scheme is CPA-secure.

Proof. Let II denote the EI Gamal encryption scheme. Let A be a
PPT adversary. We want to show that

Pr [PubK$Y(n) = 1] < = + negl(n) .

DN | =

Consider the modified “encryption scheme” II, where Gen is as II
but the encryption of M with respect to the public key (G, q, g, h)
is done by choosing uniform y, z € Z, and outputting the
ciphertext

(9¥,9° - M) .



Security of EI Gamal

By the Lemma, we have that the second component g* - M is
uniformly distributed and independent of M. The first component
gY is also independent of M. Thus, the entire ciphertext of II
contains no information about M. It follows that

Pr [PubKS?Y (n) = 1] = .



Security of EI Gamal

Now consider the following PPT algorithm D that attempts to
solve the DDH problem relative to §. D receives
(G, q,g,h1,ha, hs), where hy = g%, ho = ¢¥ and hs is either g*¥ or
g® for uniform x,y, z.
Algorithm D:
The algorithm is given (G, q, g, h1, he, h) as input.

1. Set pk = (G, q, g,h1) and run A(pk) to obtain two messages

My, My € G.
2. Choose a uniform bit b and set ¢ := hy and ¢y := hg - M.

3. Give the ciphertext (c1,c2) to A and obtain an output bit /.
If o = b, then output 1; otherwise, output 0.



Security of EI Gamal

Case 1: Say the input of D is generated by running G(1") to
obtain (G, gq, g), then choosing uniform z,y, z € G and finally
setting h1 := g%, hy := ¢¥, and h3 := g*. Then, D runs A on
public key pk = (G, q, g,¢") and ciphertext

<CI,62> = <gyagz : Mb> .

Thus, the view of A as a subroutine of D is identical to the one in

experiment PubKS’ (n). Since D outputs 1 exactly when the

output b’ of A is equal to b, we have that

Pr [D(G,q,9.9%,9Y,9°) = 1] =Pr [PubKjﬁ‘l’:[(n) =1] = 3



Security of EI Gamal

Case 2: Say the input of D is generated by running §(1") to
obtain (G, gq, g), then choosing uniform z,y, z € G and finally
setting h1 := g%, hy := ¢Y¥, and h3 := g*¥. Then, D runs A on
public key pk = (G, q, g,¢") and ciphertext

(c1,c2) = (97, 9™ - My) = (g%, (g")? - My) .

Thus, the view of A as a subroutine of D is identical to the one in
experiment PubKSPT;(n). Since D outputs 1 exactly when the
output b’ of A is equal to b, we have that

Pr [D(G’q’g’gw’gy,gxy) - 1] =Pr [PUbKiﬁ‘ﬁ(n) = 1] .



Security of EI Gamal

By the DDH hardness assumption, we have that

negl(n) >
Z‘ Pr [D(G,q,9,9%, 9%, 9") = 1] — Pr [D(G,q,9,9%, g%, 9°) = 1]’ =
—| Pr [PubKsZh(n) = 1] - % :

from where we get that Pr [PubKiﬁ‘ﬁ(n) =1] <1+4negl(n). O



Security against Chosen-Ciphertext Attacks

Given a public-key encryption scheme II = (Gen, Enc, Dec) and an
adversary A consider the following experiment:

The CCA indistinguishability experiment PubK%q;(n):

1. Gen(1™) is run to obtain (pk, sk).

2. The adversary A is given pk and access to a decryption oracle
Decgi(+). It outputs a pair of equal-length messages M, M;
in the message space.

3. A uniform bit b € {0, 1} is chosen and then a ciphertext
¢ < Encpi(My) is computed and given to A. We call ¢ the
challenge ciphertext.

4. A continues to interact with the decryption oracle, but may
not request the decryption of c itself. Finally, A outputs a bit
b.

5. The output of the experiment is 1 if b =0’ and 0 otherwise. If
b =10, we say that A succeeds.



Security against Chosen-Ciphertext Attacks

Definition

A public-key encryption scheme IT = (Gen, Enc, Dec) has
indistinguishable encryptions under a chosen ciphertext attack, or
it is CCA-secure, if for every PPT adversary A it holds that

1
Pr [PubK§g(n) = 1] < 3 + negl() .



Malleability of EI Gamal

An encryption scheme is malleable if given a ciphertext c¢ that is an
encryption of an unknown message M, it is possible to generate a
modified ciphertext ¢ that is an encryption of a message M’
having some known relation to M.



Malleability of EI Gamal

» In El Gamal, an adversary that intercepts a ciphertext
¢ = (c1,c2) can construct a ciphertext ¢ = (c1, ), where
ch=a-cy.

> It is easy to check that if ¢ is an encryption of a message M,
then ¢’ is a valid encryption of the message o - M

» El Gamal is malleable, so it is vulnerable against
chosen-ciphertext attacks (Exercise!).



The RSA encryption scheme

Theorem

Let p,q be primes. Let N :=pq and $(N) = (p—1)(¢ — 1). For
integer e > 0 define f. : Z3, — Z} by

fe(x) = 2° mod N .

If e is relatively prime to ¢(N), then f. is a permutation.
Moreover, if d = e~! mod ¢(N), then f; is the inverse of f..



The RSA encryption scheme

» Gen: On input 1™ choose two n-bit random primes p and q.
Compute N = pg and ¢(N) = (p —1)(¢ — 1). Choose e > 1
such that ged(e, #(N)) = 1. Compute d := e~ mod ¢(N).
Return (N, e) as the public key and (NN, d) as the private key.

» Enc: on input a public key pk = (N, e) and a message M € Z},,
compute the ciphertext

c=M®mod N .

» Dec: on input a private key sk = (N, d) and a ciphertext
c € Iy, compute the message

M =c*mod N .

Figure: The RSA encryption scheme.



Correctness of RSA

Let ¢ = M° mod N. Then,
M :=c¢*mod N = (M¢)? mod N = M.

This because f;(r) = 2% mod N is the inverse of
fe(x) = 2° mod N.



Security of RSA

» Factoring is at least as hard (but not known to be equivalent)
as breaking RSA.

» RSA is deterministic, therefore it is not CPA-secure.



End

References: Sec 11.1, 11.2.1, 11.4.1, Sec 11.4.1, 11.3.2 (only
Definition 11.13), 11.5.1 (up to Construction 11.26)



