Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 2 Part 1

Vigenère Cipher

The Vigenère cipher

- ► Key is a string, not a character
- ► Encrypt: shift each character in the plaintext by the amount dictated by the corresponding character of the key
- ▶ Wrap around in the key as needed
- ► Decryption just reverses the process

tellhimaboutme cafecafecafeca veqpjiredozxoe

The Vigenère cipher

- ► Size of key space?
- ► Let key be **14**-character English string
- $\blacktriangleright \implies$ key space has size $26^{14} \approx 2^{66}$
- ► Brute-force search infeasible
- ► Is the Vigenère cipher secure?
- ► (Believed secure for many years...)

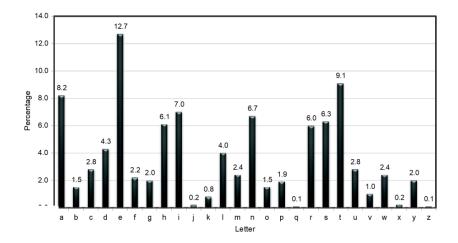
Attacking the Vigenère cipher

Observation

- ► Every **14**-th character is "encrypted" using the same shift
- ► Looking at every **14**-th character is (almost) like looking at ciphertext encrypted with the Shift Cipher
- ▶ (Direct brute-force attack still doesn't work)

[v] eqpjiredozxoe [u] alpcmsdjquiqn
[d] nossoscdcusoa [k] jqmxpqrhyycjq
[o] qqodhjcciowie [i] i

Using plaintext letter frequencies



Attacking the Vigenère cipher

- Look at every 14-th character of the ciphertext, starting with the first – call this a "stream"
- Let α be the most common character appearing in this stream
- \blacktriangleright Most likely α corresponds to the most common plaintext character i.e. e
- ▶ \implies guess that the first character of the key is αe
- ▶ Repeat for all other positions
- ▶ Require long ciphertext; prone to errors; can do better...

A better attack 1/2

- Let $p_i: 0 \le i \le 25$ denote the frequency of the *i*-th English letter in normal English plaintext
- Compute $\sum_i {p_i}^2 = 0.065$: constant for English text
- Let q_i denote the **observed** frequency of the *i*-th English letter within a given **ciphertext stream**
- $(q_i \text{ is the number of times letter } i \text{ appears in the ciphertext stream divided by the stream length})$
- i of q_i was obtained from letter i j for key j
- Therefore $q_i \approx p_{i-j}$ or equivalently $q_{i+j} \approx p_i$

A better attack 2/2

- So if the key for the stream is j, expect $q_{i+j} \approx p_i, \forall i$
- So expect $\sum_i p_i q_{i+j} \approx 0.065$ for the right key j
- Test for every value of j to find the right one
- ► This recovers the first key character
- Repeat for the second stream to recover the second key character
- Repeat for all streams to recover **the whole key**
- **Recall:** # streams = # key characters

- ▶ The previous attack assumes we know the key length
- ▶ What if we don't?
- ► Of course, can always try the previous attack for all possible key lengths as long as: # key lengths ≪ # keys
- ▶ We can do better!

Observation: correct key length

- For the **correct key length**, the ciphertext frequencies $\{q_i\}$ of a stream will be shifted versions of the $\{p_i\}$
- ▶ Recall that $q_i \approx p_{i-j}$ (equivalently $q_{i+j} \approx p_i$), where j is the key (the shift)
- In other words $\{q_i\}$ is a permutation of $\{p_i\}$
- ► It follows that:

$$\sum_i {q_i}^2 \approx \sum_i {p_i}^2 = 0.065$$

Observation: incorrect key length

- ▶ When using an **incorrect key length**, expect (heuristically) that ciphertext letters are uniform
- ► For uniform distribution:

$$\sum_{i} q_i^2 = \sum_{i} (\frac{1}{26})^2 = 26(\frac{1}{26})^2 = \frac{1}{26} = 0.038$$

Key length recovery

- ► For a cadidate key length, the attacker needs to distinguish between $\sum_i q_i^2 = 0.065$ and $\sum_i q_i^2 = 0.038$
- ▶ In fact, good enough to find the key length N that maximizes $\sum_i q_i^2$
- ► (Can verify by looking at other streams)

Byte-wise Vigenère cipher

- ► The key is a **string of bytes**
- ► The plaintext is a string of bytes
- ► Encrypt: XOR each character in the plaintext with the corresponding character of the key
- ▶ Wrap around in the key as needed
- Decryption just reverses the process

Example (ASCII encoding)

- ► Say plaintext is **Hello!** and key is **0xA1 2F**
- ▶ Hello! = 0x48 65 6C 6C 6F 21 (ASCII codes)
- ► XOR with OxA1 2F A1 2F A1 2F
- ▶ 0x48 ⊕ 0xA1
 - ▶ 0100 1000 ⊕ 1010 0001 = 1110 1001 = 0xE9
- ► Ciphertext: 0xE9 4A CD 43 CE 0E

Attacking the Byte-wise Vigenère cipher

Two steps of the attack

- 1. Determine the key length
- 2. Determine each byte of the key

- ▶ Let p_i : $0 \le i \le 255$ frequency of byte *i* in normal English (ASCII) plaintext
- e.g. p_{97} = frequency of a (97 is ASCII for a)
- Note that $p_i = 0$: $\forall i < 32, \forall i > 127$
- If $\{p_i\}$ are known, use same principles as before
- What if $\{p_i\}$ are not known?

Step 1: Determining the key length

- \blacktriangleright Let N correct key length; M any incorrect key length
- Every N-th character of plaintext is encrypted using the same key byte ("shift")
- If we take every N-th character and calculate $\{q_i\}$, we get the set $\{p_i\}$ in permuted order
- If we take every M-th character and calculate $\{q_i\}$, we get something close to uniform
- ▶ Observe: we don't need to know $\{p_i\}$ to distinguish these two!

Step 1: Determining the key length

- For some candidate key length, tabulate $\{q_0, \ldots, q_{255}\}$ for the first stream (say) and compute $\sum_i {q_i}^2$
- ► If close to uniform:

$$\sum_{i} {q_i}^2 \approx 256 (\frac{1}{256})^2 = \frac{1}{256}$$

• If a permutation of $\{p_i\}$:

$$\sum_{i} q_i^2 \approx \sum_{i} p_i^2 \gg \frac{1}{256}$$

Step 1: Determining the key length

- Key point: for correct length, $\sum_i q_i^2$ much larger than $\frac{1}{256}$
- So compute $\sum_{i} q_i^2$ for each possible key length, and look for maximum value
- Correct key length N should yield a large value for all N streams

Step 2: Determining the i-th byte of the key

- \blacktriangleright Assume the key length N is known
- \blacktriangleright Look at i-th ciphertext stream
- ► As before, all bytes in this stream were generated by XOR -ing plaintext with the same byte of the key (the *i*-th byte!)
- \blacktriangleright Decrypt the stream with every possible by te value B
- ▶ Get a candidate plaintext stream for each value
- ▶ i.e. **256** decrypted candidate plaintext streams

Step 2: Determining the i-th byte of the key

If guess for \boldsymbol{B} is correct

- ▶ All bytes in plaintext stream will be between **32** and **126**
- ▶ Frequency of space character should be high
- ► Frequencies of lowercase letters (as a fraction of all lowercase letters) should be close to known English-letter frequencies:
 - ▶ Tabulate observed letter frequencies $q'_0 \dots q'_{25}$ (as fraction of all lowercase letters) in the candidate plaintext
 - ▶ Should find $\sum q'_i p'_i \approx \sum {p'_i}^2 \approx 0.065$, where p'_i corresponds to English-letter frequencies
- ▶ In practice, take **B** that maximizes $\sum q'_i p'_i$

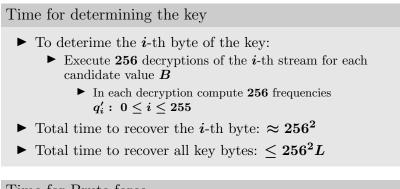
Attack time?

Time for determining the key length

 \blacktriangleright Let the key length be at most L i.e. $1 \leq N \leq L$

- $\blacktriangleright\,$ Execute at most L trials for the correct key length
 - ▶ In each trial compute **256** frequencies q_i : $0 \le i \le 255$
- Total time: $\approx 256 L$

Attack time?



Time for Brute-force

 256^L

Total attack time vs. brute-force

$256L + 256^2L \approx 256^2L \ll 256^L$

Note

The attack is more reliable as the ciphertext length grows larger

Lessons learned

Crypto Design Lesson One (recall)

► The key space must be large enough to make brute-force attacks impractical (cf. Shift Cipher)

Crypto Design Lesson Two

► Large key space is a necessary, but not sufficient condition for a secure encryption scheme (cf. Vigenère Cipher)

But what does *secure* actually mean? (next lecture!)

End

Reference: Section 1.3 of the book