
Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 2 Part 1

1 / 26



Vigenère Cipher

2 / 26



The Vigenère cipher

▶ Key is a string, not a character

▶ Encrypt: shift each character in the plaintext by the
amount dictated by the corresponding character of the key

▶ Wrap around in the key as needed

▶ Decryption just reverses the process

tellhimaboutme

cafecafecafeca

veqpjiredozxoe

3 / 26



The Vigenère cipher

▶ Size of key space?

▶ Let key be 14-character English string

▶ =⇒ key space has size 2614 ≈ 266

▶ Brute-force search infeasible

▶ Is the Vigenère cipher secure?

▶ (Believed secure for many years...)

4 / 26



Attacking the Vigenère cipher

Observation

▶ Every 14-th character is ”encrypted” using the same shift

▶ Looking at every 14-th character is (almost) like looking at
ciphertext encrypted with the Shift Cipher

▶ (Direct brute-force attack still doesn’t work)

[v]eqpjiredozxoe[u]alpcmsdjquiqn

[d]nossoscdcusoa[k]jqmxpqrhyycjq

[o]qqodhjcciowie[i]i

5 / 26



Using plaintext letter frequencies

6 / 26



Attacking the Vigenère cipher

▶ Look at every 14-th character of the ciphertext, starting
with the first – call this a ”stream”

▶ Let α be the most common character appearing in this
stream

▶ Most likely α corresponds to the most common plaintext
character i.e. e

▶ =⇒ guess that the first character of the key is α – e

▶ Repeat for all other positions

▶ Require long ciphertext; prone to errors; can do better...

7 / 26



A better attack 1/2

▶ Let pi : 0 ≤ i ≤ 25 denote the frequency of the i-th
English letter in normal English plaintext

▶ Compute
∑

i pi
2 = 0.065 : constant for English text

▶ Let qi denote the observed frequency of the i-th English
letter within a given ciphertext stream

▶ (qi is the number of times letter i appears in the ciphertext
stream divided by the stream length)

▶ i of qi was obtained from letter i − j for key j

▶ Therefore qi ≈ pi−j or equivalently qi+j ≈ pi

8 / 26



A better attack 2/2

▶ So if the key for the stream is j, expect qi+j ≈ pi, ∀i
▶ So expect

∑
i piqi+j ≈ 0.065 for the right key j

▶ Test for every value of j to find the right one

▶ This recovers the first key character

▶ Repeat for the second stream to recover the second key
character

▶ Repeat for all streams to recover the whole key

▶ Recall: # streams = # key characters

9 / 26



Finding the key length

▶ The previous attack assumes we know the key length

▶ What if we don’t?

▶ Of course, can always try the previous attack for all
possible key lengths as long as: # key lengths ≪ # keys

▶ We can do better!

10 / 26



Finding the key length

Observation: correct key length

▶ For the correct key length, the ciphertext frequencies
{qi} of a stream will be shifted versions of the {pi}

▶ Recall that qi ≈ pi−j (equivalently qi+j ≈ pi), where j is
the key (the shift)

▶ In other words {qi} is a permutation of {pi}
▶ It follows that: ∑

i

qi
2 ≈

∑
i

pi
2 = 0.065

11 / 26



Finding the key length

Observation: incorrect key length

▶ When using an incorrect key length, expect
(heuristically) that ciphertext letters are uniform

▶ For uniform distribution:∑
i

qi
2 =

∑
i

(
1

26
)2 = 26(

1

26
)2 =

1

26
= 0.038

12 / 26



Finding the key length

Key length recovery

▶ For a cadidate key length, the attacker needs to distinguish
between

∑
i qi

2 = 0.065 and
∑

i qi
2 = 0.038

▶ In fact, good enough to find the key length N that
maximizes

∑
i qi

2

▶ (Can verify by looking at other streams)

13 / 26



Byte-wise Vigenère cipher

▶ The key is a string of bytes

▶ The plaintext is a string of bytes

▶ Encrypt: XOR each character in the plaintext with the
corresponding character of the key

▶ Wrap around in the key as needed

▶ Decryption just reverses the process

14 / 26



Example (ASCII encoding)

▶ Say plaintext is Hello! and key is 0xA1 2F

▶ Hello! = 0x48 65 6C 6C 6F 21 (ASCII codes)

▶ XOR with 0xA1 2F A1 2F A1 2F

▶ 0x48 ⊕ 0xA1
▶ 0100 1000 ⊕ 1010 0001 = 1110 1001 = 0xE9

▶ Ciphertext: 0xE9 4A CD 43 CE 0E

15 / 26



Attacking the Byte-wise Vigenère cipher

Two steps of the attack

1. Determine the key length

2. Determine each byte of the key

▶ Let pi : 0 ≤ i ≤ 255 – frequency of byte i in normal
English (ASCII) plaintext

▶ e.g. p97 = frequency of a (97 is ASCII for a)

▶ Note that pi = 0 : ∀i < 32, ∀i > 127

▶ If {pi} are known, use same principles as before

▶ What if {pi} are not known?

16 / 26



Step 1: Determining the key length

▶ Let N – correct key length; M – any incorrect key length

▶ Every N -th character of plaintext is encrypted using the
same key byte (”shift”)

▶ If we take every N -th character and calculate {qi}, we get
the set {pi} in permuted order

▶ If we take every M -th character and calculate {qi}, we get
something close to uniform

▶ Observe: we don’t need to know {pi} to distinguish
these two!

17 / 26



Step 1: Determining the key length

▶ For some candidate key length, tabulate {q0, . . . , q255} for
the first stream (say) and compute

∑
i qi

2

▶ If close to uniform:∑
i

qi
2 ≈ 256(

1

256
)2 =

1

256

▶ If a permutation of {pi}:∑
i

qi
2 ≈

∑
i

pi
2 ≫

1

256

18 / 26



Step 1: Determining the key length

▶ Key point: for correct length,
∑

i qi
2 much larger than 1

256

▶ So compute
∑

i qi
2 for each possible key length, and look

for maximum value

▶ Correct key length N should yield a large value for all N
streams

19 / 26



Step 2: Determining the i-th byte of the key

▶ Assume the key length N is known

▶ Look at i-th ciphertext stream

▶ As before, all bytes in this stream were generated by
XOR -ing plaintext with the same byte of the key (the
i-th byte!)

▶ Decrypt the stream with every possible byte value B

▶ Get a candidate plaintext stream for each value

▶ i.e. 256 decrypted candidate plaintext streams

20 / 26



Step 2: Determining the i-th byte of the key

If guess for B is correct

▶ All bytes in plaintext stream will be between 32 and 126

▶ Frequency of space character should be high

▶ Frequencies of lowercase letters (as a fraction of all
lowercase letters) should be close to known English-letter
frequencies:
▶ Tabulate observed letter frequencies q′

0 . . . q
′
25 (as fraction

of all lowercase letters) in the candidate plaintext
▶ Should find

∑
q′
ip

′
i ≈

∑
p′
i
2 ≈ 0.065, where p′

i

corresponds to English-letter frequencies

▶ In practice, take B that maximizes
∑

q′ip
′
i

21 / 26



Attack time?

Time for determining the key length

▶ Let the key length be at most L i.e. 1 ≤ N ≤ L

▶ Execute at most L trials for the correct key length
▶ In each trial compute 256 frequencies qi : 0 ≤ i ≤ 255

▶ Total time: ≈ 256 L

22 / 26



Attack time?

Time for determining the key

▶ To deterime the i-th byte of the key:
▶ Execute 256 decryptions of the i-th stream for each

candidate value B
▶ In each decryption compute 256 frequencies

q′
i : 0 ≤ i ≤ 255

▶ Total time to recover the i-th byte: ≈ 2562

▶ Total time to recover all key bytes: ≤ 2562L

Time for Brute-force

256L

23 / 26



Total attack time vs. brute-force

256L + 2562L ≈ 2562L ≪ 256L

Note

The attack is more reliable as the ciphertext length grows larger

24 / 26



Lessons learned

Crypto Design Lesson One (recall)

▶ The key space must be large enough to make brute-force
attacks impractical (cf. Shift Cipher)

Crypto Design Lesson Two

▶ Large key space is a necessary, but not sufficient condition
for a secure encryption scheme (cf. Vigenère Cipher)

But what does secure actually mean? (next lecture!)

25 / 26



End

Reference: Section 1.3 of the book

26 / 26


