Introduction to Modern Cryptography

Michele Ciampi
(Slides courtesy of Prof. Jonathan Katz)

Lecture 2 Part 1

1/26



Vigenere Cipher

2/26



The Vigenere cipher

» Key is a string, not a character

» Encrypt: shift each character in the plaintext by the
amount dictated by the corresponding character of the key

» Wrap around in the key as needed

» Decryption just reverses the process

tellhimaboutme
cafecafecafeca

veqgpjiredozxoe

3/26



The Vigenere cipher

Size of key space?
Let key be 14-character English string
— key space has size 2614 ~ 266

>

>

| 2

» Brute-force search infeasible
» Is the Vigenere cipher secure?
>

(Believed secure for many years...)

4/26



Attacking the Vigenere cipher

Observation

» Every 14-th character is "encrypted” using the same shift

» Looking at every 14-th character is (almost) like looking at
ciphertext encrypted with the Shift Cipher

» (Direct brute-force attack still doesn’t work)

[vlegpjiredozxoe[u]lalpcmsdjquign
[dlnossoscdcusoa[k] jgmxpgrhyycjq
[olggodhjcciowie[i]i

5/26



Using plaintext letter frequencies

14.0

12.0 |

10.0

8.0

6.0

Percentage

4.0

20

6/26



Attacking the Vigenere cipher

v

Look at every 14-th character of the ciphertext, starting
with the first — call this a ”stream”

Let a be the most common character appearing in this
stream

Most likely ¢ corresponds to the most common plaintext
character i.e. e

—> guess that the first character of the key is o — e
Repeat for all other positions

Require long ciphertext; prone to errors; can do better...

7/26



A better attack 1/2

» Let p; : 0 <2 < 25 denote the frequency of the z-th
English letter in normal English plaintext

» Compute ), p;2 = 0.065 : constant for English text

» Let g; denote the observed frequency of the ¢-th English
letter within a given ciphertext stream

» (g; is the number of times letter ¢ appears in the ciphertext
stream divided by the stream length)

» ¢ of g; was obtained from letter ¢ — j for key 3

» Therefore q; = p;—; or equivalently q;1; = p;

8/26



A better attack 2/2

vVVvyVvyyVvyy

vy

So if the key for the stream is j, expect q;+; = p;, Vi
So expect Y, P;iqi+j; ~ 0.065 for the right key j
Test for every value of 7 to find the right one

This recovers the first key character

Repeat for the second stream to recover the second key
character

Repeat for all streams to recover the whole key

Recall: # streams = # key characters

9/26



Finding the key length

» The previous attack assumes we know the key length
» What if we don’t?

» Of course, can always try the previous attack for all
possible key lengths as long as: # key lengths < # keys

» We can do better!

10/ 26



Finding the key length

Observation: correct key length
» For the correct key length, the ciphertext frequencies
{q;} of a stream will be shifted versions of the {p;}

» Recall that g; = p;—; (equivalently g;1; =~ p;), where j is
the key (the shift)

» In other words {g;} is a permutation of {p;}
» It follows that:

qu ~ Zpiz = 0.065
1 1

11/26



Finding the key length

Observation: incorrect key length

» When using an incorrect key length, expect
(heuristically) that ciphertext letters are uniform

» For uniform distribution:

1 1 1
2 2 2
E 2 — § )2 =26(—)2=— =0.038
- e - (26) (26) 26

12/26



Finding the key length

Key length recovery

» For a cadidate key length, the attacker needs to distinguish
between Y, ;2 = 0.065 and ), ¢;> = 0.038

» In fact, good enough to find the key length IN that
maximizes Y, g;°

» (Can verify by looking at other streams)

13 /26



Byte-wise Vigenere cipher

v

The key is a string of bytes
The plaintext is a string of bytes

Encrypt: XOR each character in the plaintext with the
corresponding character of the key

Wrap around in the key as needed

Decryption just reverses the process

14 /26



Example (ASCII encoding)

Say plaintext is Hello! and key is 0xA1 2F
Hello! = 0x48 65 6C 6C 6F 21 (ASCII codes)

XOR with OxA1 2F A1 2F Al 2F
0x48 @ OxA1l
» 0100 1000 @ 1010 0001 = 1110 1001 = OxE9

» Ciphertext: 0XxE9 4A CD 43 CE OE

15/ 26



Attacking the Byte-wise Vigenere cipher

Two steps of the attack

1. Determine the key length

v

vVvVvYvYyyYy

Determine each byte of the key

Let p; : 0 <1 < 255 — frequency of byte ¢ in normal
English (ASCII) plaintext

e.g. pgr = frequency of a (97 is ASCII for a)
Note that p; = 0: Vi < 32, Ve > 127

If {p;} are known, use same principles as before
What if {p;} are not known?

16 /26



Step 1: Determining the key length

» Let IN — correct key length; M — any incorrect key length

» Every IN-th character of plaintext is encrypted using the
same key byte (”shift”)

» If we take every IN-th character and calculate {q;}, we get
the set {p;} in permuted order

» If we take every M-th character and calculate {q;}, we get
something close to uniform

» Observe: we don’t need to know {p;} to distinguish
these two!

17 /26



Step 1: Determining the key length

» For some candidate key length, tabulate {qq, . . .

the first stream (say) and compute Y, ;2

» If close to uniform:

1
2~ 256(—)2 =
;qz (256) 256

» If a permutation of {p;}:

};: Qi :5::191 > iﬁ;&

, Q255 } for

18 /26



Step 1: Determining the key length

1
256

» So compute ), q;? for each possible key length, and look
for maximum value

» Key point: for correct length, >, @;* much larger than

» Correct key length IV should yield a large value for all NV
streams

19/ 26



Step 2: Determining the ¢-th byte of the key

v

v

Assume the key length N is known
Look at ¢-th ciphertext stream

As before, all bytes in this stream were generated by

XOR -ing plaintext with the same byte of the key (the
i-th byte!)

Decrypt the stream with every possible byte value B

Get a candidate plaintext stream for each value

i.e. 256 decrypted candidate plaintext streams

20/26



Step 2: Determining the ¢-th byte of the key

If guess for B is correct

» All bytes in plaintext stream will be between 32 and 126

» Frequency of space character should be high

» Frequencies of lowercase letters (as a fraction of all
lowercase letters) should be close to known English-letter
frequencies:

» Tabulate observed letter frequencies qj . .. g5 (as fraction
of all lowercase letters) in the candidate plaintext

> Should find 3" ¢/p} = 3" p,® ~ 0.065, where P,
corresponds to English-letter frequencies

» In practice, take B that maximizes ) q.p;

21 /26



Attack time?

Time for determining the key length

» Let the key length be at most Lie. 1 < N < L
» Execute at most L trials for the correct key length
» In each trial compute 256 frequencies q; : 0 < 7 < 255

» Total time: =~ 256 L

22 /26



Attack time?

Time for determining the key

» To deterime the 2-th byte of the key:

» Execute 256 decryptions of the ¢-th stream for each
candidate value B

» In each decryption compute 256 frequencies
qg.: 0<1i<255

» Total time to recover the i-th byte: ~ 2562
» Total time to recover all key bytes: < 2562L

Time for Brute-force

256~

23 /26



Total attack time vs. brute-force

256L + 256%L ~ 256°%L < 256L

Note

The attack is more reliable as the ciphertext length grows larger

24 /26



Lessons learned

Crypto Design Lesson One (recall)

» The key space must be large enough to make brute-force
attacks impractical (cf. Shift Cipher)

Crypto Design Lesson Two

» Large key space is a necessary, but not sufficient condition
for a secure encryption scheme (cf. Vigeneére Cipher)

But what does secure actually mean? (next lecture!)

25 /26



End

Reference: Section 1.3 of the book

26 /26



