
Extreme Computing

Distributed Query Processing

Amir Shaikhha, Fall 2023

Recap: Spark Software Stack

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems

IJPEDS-ProgrammingBigDataAnalysis-PrePrint

8 Taylor & Francis and I.T. Consultant

3.2.1 Apache Spark

Apache Spark1 is another top project of Apache Software Foundation for Big
Data analysis. Di↵erently from Hadoop, in which intermediate data are always
stored in distributed file systems, Spark stores data in RAM memory and queries
it repeatedly so as to obtain better performance for some classes of applications
compared to Hadoop (e.g., iterative machine learning algorithms) [13]. A Spark
application in defined as a set of independent stages running on a pool of worker
nodes. A stage is a set of tasks executing the same code on di↵erent partitions of
input data.
Spark and Hadoop are considered the leading open source Big Data systems and

thus are supported by every major Cloud providers. As shown in Figure 4, di↵erent
libraries have been built on top of Spark: Spark SQL for dealing with SQL and Data
Frames,MLlib for machine learning, GraphX for graph-parallel computation, Spark
Streaming for building streaming applications. The execution of a generic Spark
application on a cluster is driven by a central coordinator (i.e., the main process
of the application), which can connect with di↵erent cluster managers, such as
Apache Mesos1, YARN, or Spark Standalone (i.e., a cluster manager available as
part of the Spark distribution). Ambari can be used for provisioning, managing,
and monitoring Spark clusters.

Spark Core
Processing Engine

Ambari
Provisioning, managing and monitoring Spark clusters

Mesos / YARN / Standalone
Cluster Resource Management

HDFS / Amazon S3 / OpenStack Swift / Cassandra
Distributed File System & Storage

Spark SQL
(SQL)

MLlib
(Machine
Learning)

GraphX
(Graph processing)

Spark
Streaming
(Streaming)

Other
Spark

libraries

Figure 4. Spark software stack.

Even though in some classes of applications Spark is considered a better alter-
native to Hadoop, in many others it has limitations that make it complementary
to Hadoop. The main limitation of Spark is that datasets should fit in RAM mem-
ory. In addition, it does not provide its own distributed storage system, which is a
fundamental requirement for Big Data applications. To overcome this lack, Spark
has been designed to run on top of several data sources, such as distributed file
systems (e.g., HDFS), Cloud object storages (e.g., Amazon S3, OpenStack Swift)
and NoSQL databases (e.g., Cassandra).
Spark’s real-time processing capability is increasingly being used into applica-

tions that requires to extract insights quickly from data, such as recommendation
and monitoring systems. For this reason, several big companies exploit Spark for
data analysis purpose: SK Telecom analyzes mobile usage patterns of customers,
Ebay uses Spark for log aggregation, and Kelkoo for product recommendations.

1
https://spark.apache.org

1
http://mesos.apache.org/

2

Recap: Programming Models

• Spark vs. Hadoop MapReduce
– More flexible programming model
– General execution graphs
– In-memory storage

3

RDD Example

• Let’s count UK students who have debt &
financial dependents

4

case class Demographic(id: Int, age: Int, ...)
case class Finances(id: Int, hasDebt: Boolean, ...)

// Pair RDD (id, demographics)
val demographics = sc.textFile(...)...

// Pair RDD (id, finances)
val finances = sc.textFile(...)...

RDD Example

• Possibility 1

• Steps
1. Inner join
2. Filter to only consider people in UK
3. Filter to only consider people with debt &

finanical depedents 5

demographics.join(finances)
.filter({ p =>
p._2._1.country == "UK" &&
p._2._2.hasFinancialDependents &&
p._2._2.hasDebt

}).count

RDD Example

• Possibility 2

• Steps
1. Filter to only consider people with debt &

finanical depedents
2. Filter to only consider people in UK
3. Inner join on smaller datasets 6

val filtered = finances.filter({p =>
p._2.hasFinancialDependents &&
p._2.hasDebt })

demographics.filter(p => p._2.country == "UK")
.join(filtered)
.count

RDD Example

• Possibility 3

• Steps
1. Cartesian product on both datasets
2. Filter to only consider the pairs with the same id
3. Filter to only consider people in UK
4. Filter to only consider pople with debt & finanical depedents

7

val cart = demographics.cartesian(finances)
cart.filter(p => p._1._1 == p._2._1)
.filter({ p =>
p._1._2.country == "UK" &&
p._2._2.hasFinancialDependents &&
p._2._2.hasDebt

}).count

RDD Example

• The end result is the same for all three of
these possibilities

• However, the execution time is vastly
different

8

Filtering data first is 3.6x faster.

RDD Example

• The end result is the same for all three of
these possibilities

• However, the execution time is vastly
different

9

Cartesian product is 177x slower!

RDD Example

• So far, it was the responsibility of the
programmer to think carefully about how
Spark jobs might actually be executed
cluster to get good performance

• Could Spark automatically rewrite the
code in possibility 3 to possibility 2?

10

Given more structural information,
Spark can do many optimizations.

• Data falls on spectrum from unstructured
to structured.

Structured vs. Unstructured
Data

11

Structured Data vs RDDs

• Spark RDDs don’t know anything about
the schema of data

• Spark only knows that the RDD is
parameterized with arbitrary types (e.g.,
Person, Account, Demographic)

• However, it doesn’t know anything about
the structure of these types

12

Structured Data Example

• Assume a dataset of Account objects

• What Spark RDDs see:

• What DBMSes see:

13

case class Account(name: String, balance: Double, risk: Boolean)

Structured vs Unstructured
Computation

• The same can be said about computation.
• Spark:

– Functional transformations on data.
– Passing function literals to higher-order

functions (e.g., map, flatMap, and filter)

• DBMSes:
– Delarative transformations on data
– Specialized/structured, pre-defined operations

14

σ

Π
⋈

Structured vs. Unstructured

• Spark RDDs:

• DBMSes:

15

σ

Π
⋈

Not so much structure.
Difficult to Optimize!

Lots of structure.
Lots of optimization opportunities

Optimizations + Spark?

• How can Spark automatically do these
optimizations?

16

Spark SQL

Spark Software Stack

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems

IJPEDS-ProgrammingBigDataAnalysis-PrePrint

8 Taylor & Francis and I.T. Consultant

3.2.1 Apache Spark

Apache Spark1 is another top project of Apache Software Foundation for Big
Data analysis. Di↵erently from Hadoop, in which intermediate data are always
stored in distributed file systems, Spark stores data in RAM memory and queries
it repeatedly so as to obtain better performance for some classes of applications
compared to Hadoop (e.g., iterative machine learning algorithms) [13]. A Spark
application in defined as a set of independent stages running on a pool of worker
nodes. A stage is a set of tasks executing the same code on di↵erent partitions of
input data.
Spark and Hadoop are considered the leading open source Big Data systems and

thus are supported by every major Cloud providers. As shown in Figure 4, di↵erent
libraries have been built on top of Spark: Spark SQL for dealing with SQL and Data
Frames,MLlib for machine learning, GraphX for graph-parallel computation, Spark
Streaming for building streaming applications. The execution of a generic Spark
application on a cluster is driven by a central coordinator (i.e., the main process
of the application), which can connect with di↵erent cluster managers, such as
Apache Mesos1, YARN, or Spark Standalone (i.e., a cluster manager available as
part of the Spark distribution). Ambari can be used for provisioning, managing,
and monitoring Spark clusters.

Spark Core
Processing Engine

Ambari
Provisioning, managing and monitoring Spark clusters

Mesos / YARN / Standalone
Cluster Resource Management

HDFS / Amazon S3 / OpenStack Swift / Cassandra
Distributed File System & Storage

Spark SQL
(SQL)

MLlib
(Machine
Learning)

GraphX
(Graph processing)

Spark
Streaming
(Streaming)

Other
Spark

libraries

Figure 4. Spark software stack.

Even though in some classes of applications Spark is considered a better alter-
native to Hadoop, in many others it has limitations that make it complementary
to Hadoop. The main limitation of Spark is that datasets should fit in RAM mem-
ory. In addition, it does not provide its own distributed storage system, which is a
fundamental requirement for Big Data applications. To overcome this lack, Spark
has been designed to run on top of several data sources, such as distributed file
systems (e.g., HDFS), Cloud object storages (e.g., Amazon S3, OpenStack Swift)
and NoSQL databases (e.g., Cassandra).
Spark’s real-time processing capability is increasingly being used into applica-

tions that requires to extract insights quickly from data, such as recommendation
and monitoring systems. For this reason, several big companies exploit Spark for
data analysis purpose: SK Telecom analyzes mobile usage patterns of customers,
Ebay uses Spark for log aggregation, and Kelkoo for product recommendations.

1
https://spark.apache.org

1
http://mesos.apache.org/

17

Relational Queries (SQL)

18

87%

42%

24% 21% 19%

0%
10%

20%
30%
40%

50%
60%

70%
80%
90%

100%

Python SQL R C++ Java

[Kaggle Survey 2020]

Relational Queries (SQL)

• Everything about SQL is structured
• SQL = Structured Query Language

– Fixed set of data types: Int, Long, String, etc.
– Fixed set of operations: select, where, group

by, join, etc.
• Relational databases exploit these

structures to get performance speedups

19

Relational Queries (SQL)

• Data organized into one or more tables
• Table = Relation

– Column=Attribute
– Row=Record=Tuple

• Tables represent a collection of objects of
a certain type

20

SQL for Spark

• It’s hard to connect big data processing
pipelines to a relational database

• It would be nice to
– Seamlessly intermix SQL queries with Scala
– Get all the DB optimizations on Spark jobs

21

Spark SQL delivers both!

Spark SQL Goals

1. Support relational processing on both
Spark RDDs and on external data
sources with a friendly API

2. High performance, by using techniques
from the DB community

3. Support new data sources such as semi-
structured data and external DBs.

22

Spark SQL APIs

• DataFrames
• SQL literal syntax
• Datasets

23

DataFrame

• Core abstraction of Spark SQL
– Equivalent to a table in a relational DB

• DataFrame = RDD + schema
• DataFrames are untyped!

– Scala compiler doesn’t check the types in
their schema

– Transformations are untyped.

24

Creating DataFrames

• From RDDs
– Inferring schema
– Explicitly specifying schema

• Reading a data source from file

25

Creating DataFrames (cont.)

• From RDDs
– Inferring schema

– Explicitly specifying schema

26

val rowRDD = ...
// DataFrame by explicitly specifying schema
val peopleDF = spark.createDataFrame(rowRDD, schema)

val rowRDD = ...
// DataFrame by inferring schema
val peopleDF = spark.createDataFrame(rowRDD)

SQL literal syntax

• Progammers can use SQL syntax to
operate on DataFrames

27

// DataFrame by explicitly specifying schema
val peopleDF = spark.createDataFrame(rowRDD, schema)

// SQL literals are passed to sql method
spark.sql("SELECT * FROM people WHERE age > 27")

How to connect
people and peopleDF?

SQL literal syntax (cont.)

• Progammers can use SQL syntax to
operate on DataFrames

28

// DataFrame by explicitly specifying schema
val peopleDF = spark.createDataFrame(rowRDD, schema)
// Register the DataFrame as a SQL temporary view
peopleDF.createOrRepalceTempView("people")
// SQL literals are passed to sql method
spark.sql("SELECT * FROM people WHERE age > 27")

DataFrame API

• A relational API over Spark RDDs
– select
– where

– limit

– orderBy
– groupBy

– join

• Can be automatically aggressively
optimized

29

DataFrame Example

30

demographicsDF.join(financesDF,
demographicsDF("ID") === financesDF("ID"), "inner")

.filter($"hasDebt" && $"hasFinancialDependents")

.filter($"country" === "UK")

.count

4x faster than almost the same program
written using RDDs

Spark SQL Architecture

31

Catalyst

• Spark SQL’s query optimizer
• Assumptions

– Has full knowledge of all data types
– Knows the exact schema of our data
– Has detailed knowledge of computations

• Optimizations
– Reordering operations
– Reduce the amount of data read
– Pruning unneeded partitioning

32

Limitations of DataFrame

• Untyped
– Runtime exceptions even if the code compiles
– Would be great to catch such errors at

compilation time
• Limited data types

– Semi-structured/structured data
– Otherwise, use RDDs

33

Dataset

• Typed variant of DataFrame!

• In the middle between DataFrames and
RDDs
– DataFrame operations
– More typed operations
– Higher-order functions like map, flatMap, filter

34

type DataFrame = Dataset[Row]

Limitations of Dataset

• Catalyst cannot optimize higher-order
functional operations
– Similar to RDDs

• Limited data types
– Semi-structure/structured data
– Otherwise, use RDDs

35

Dataset / DataFrame / RDD
• Use datasets when

– Structured/semi-structured data
– Type-safety
– Functional APIs
– Good performance, but not the best

• Use DataFrames when
– Structured/semi-structured data
– Best possible performance, automatically optimized

• Use RDDs when
– Unstructured/complex data
– Fine-tune and manage low-level datails of RDD computations

36

Resources

• Compulsory reading:
– Spark SQL [SIGMOD’15]

• Spark SQL: Relational data processing in
Spark

• Recommended reading
– Apache PIG [VLDB’09]
– Shark [SIGMOD’13]
– DyradLINQ [OSDI’08]

37

QUESTIONS?

38

