
Extreme Computing

Distributed Graph Processing

Amir Shaikhha, Fall 2023

Graphs are everywhere

2

Social networks Web graph/search engine

E-commerce Maps Computational
biology

Example: PageRank

3

Web graph

Graph Parallel Algorithms

Dependency
Graph

Iterative
Computation

My Interests

Friends
Interests

Local
Updates

Many graph algorithms

5

• Collaborative Filtering
– Alternating Least Squares
– Stochastic Gradient Descent
– Tensor Factorization

• Structured Prediction
– Loopy Belief Propagation
– Max-Product Linear

Programs
– Gibbs Sampling

• Semi-supervised ML
– Graph SSL
– CoEM

• Community Detection
– Triangle-Counting
– K-core Decomposition
– K-Truss

• Graph Analytics
– PageRank
– Personalized PageRank
– Shortest Path
– Graph Coloring

• Classification
– Neural Networks

Graph processing framework

6

oogle

Graph processing frameworks

7

Parallelization Communication

Fault-tolerance

Load balancing

Synchronization Scheduling

Application

LibraryGraph-parallel

Why do we need a new
framework?

• Why don’t we just MapReduce?

• How would you implement Graph
processing in MapReduce?

8

Data Dependencies are Difficult
• Difficult to express dependent data in MR

– Substantial data transformations
– User managed graph structure
– Costly data replication

In
de

pe
nd

en
t D

at
a

R
ec

or
ds

Iterative Computation is Difficult
• System is not optimized for iteration:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Disk Penalty

Disk Penalty

Disk Penalty

Startup
Penalty

Startup Penalty

Startup Penalty

Barrier
Pregel: Bulk Synchronous Parallel

Compute Communicate

http://dl.acm.org/citation.cfm?id=1807184

http://dl.acm.org/citation.cfm?id=1807184

Vertex centric API

12

Active Inactive

Programming API
Class Vertex{

//Main methods
Compute(MessageIterator *msgs);
SendMsgTo(dest, msg);
VoteToHalt();

//Auxiliary methods
GetValue();
MutableValue();
GetOutEdgeIterator();
SuperStep();

}

13

Example: maximum value

14

3 6 2 1 Superstep 0

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

Example: PageRank

15

Rank of
webpage i Weighted sum of

neighbors’ ranks

Iterate until it converges

Example: PageRank
4.4 Master implementation

The master is primarily responsible for coordinating the
activities of workers. Each worker is assigned a unique iden-
tifier at the time of its registration. The master maintains a
list of all workers currently known to be alive, including the
worker’s unique identifier, its addressing information, and
which portion of the graph it has been assigned. The size of
the master’s data structures is proportional to the number
of partitions, not the number of vertices or edges, so a sin-
gle master can coordinate computation for even a very large
graph.

Most master operations, including input, output, compu-
tation, and saving and resuming from checkpoints, are ter-
minated at barriers: the master sends the same request to
every worker that was known to be alive at the time the op-
eration begins, and waits for a response from every worker.
If any worker fails, the master enters recovery mode as de-
scribed in section 4.2. If the barrier synchronization suc-
ceeds, the master proceeds to the next stage. In the case of
a computation barrier, for example, the master increments
the global superstep index and proceeds to the next super-
step.

The master also maintains statistics about the progress of
computation and the state of the graph, such as the total size
of the graph, a histogram of its distribution of out-degrees,
the number of active vertices, the timing and message traf-
fic of recent supersteps, and the values of all user-defined
aggregators. To enable user monitoring, the master runs an
HTTP server that displays this information.

4.5 Aggregators
An aggregator (Section 3.3) computes a single global value

by applying an aggregation function to a set of values that
the user supplies. Each worker maintains a collection of ag-
gregator instances, identified by a type name and instance
name. When a worker executes a superstep for any partition
of the graph, the worker combines all of the values supplied
to an aggregator instance into a single local value: an ag-
gregator that is partially reduced over all of the worker’s
vertices in the partition. At the end of the superstep work-
ers form a tree to reduce partially reduced aggregators into
global values and deliver them to the master. We use a
tree-based reduction—rather than pipelining with a chain
of workers—to parallelize the use of CPU during reduction.
The master sends the global values to all workers at the
beginning of the next superstep.

5. APPLICATIONS
This section presents four examples that are simplified

versions of algorithms developed by Pregel users to solve real
problems: Page Rank, Shortest Paths, Bipartite Matching,
and a Semi-Clustering algorithm.

5.1 PageRank
A Pregel implementation of a PageRank algorithm [7] is

shown in Figure 4. The PageRankVertex class inherits from
Vertex. Its vertex value type is double to store a tentative
PageRank, and its message type is double to carry PageR-
ank fractions, while the edge value type is void because
edges do not store information. We assume that the graph
is initialized so that in superstep 0, the value of each vertex
is 1 / NumVertices(). In each of the first 30 supersteps,
each vertex sends along each outgoing edge its tentative

class PageRankVertex
: public Vertex<double, void, double> {

public:
virtual void Compute(MessageIterator* msgs) {

if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();
*MutableValue() =

0.15 / NumVertices() + 0.85 * sum;
}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}
}

};

Figure 4: PageRank implemented in Pregel.

PageRank divided by the number of outgoing edges. Start-
ing from superstep 1, each vertex sums up the values arriving
on messages into sum and sets its own tentative PageRank
to 0.15/NumVertices() + 0.85⇥ sum. After reaching super-
step 30, no further messages are sent and each vertex votes
to halt. In practice, a PageRank algorithm would run until
convergence was achieved, and aggregators would be useful
for detecting the convergence condition.

5.2 Shortest Paths
Shortest paths problems are among the best known prob-

lems in graph theory and arise in a wide variety of applica-
tions [10, 24], with several important variants. The single-
source shortest paths problem requires finding a shortest
path between a single source vertex and every other vertex
in the graph. The s-t shortest path problem requires find-
ing a single shortest path between given vertices s and t; it
has obvious practical applications like driving directions and
has received a great deal of attention. It is also relatively
easy—solutions in typical graphs like road networks visit a
tiny fraction of vertices, with Lumsdaine et al [31] observ-
ing visits to 80,000 vertices out of 32 million in one example.
A third variant, all-pairs shortest paths, is impractical for
large graphs because of its O(|V |2) storage requirements.

For simplicity and conciseness, we focus here on the single-
source variant that fits Pregel’s target of large-scale graphs
very well, but o↵ers more interesting scaling data than the
s-t shortest path problem. An implementation is shown in
Figure 5.

In this algorithm, we assume the value associated with
each vertex is initialized to INF (a constant larger than any
feasible distance in the graph from the source vertex). In
each superstep, each vertex first receives, as messages from
its neighbors, updated potential minimum distances from
the source vertex. If the minimum of these updates is less
than the value currently associated with the vertex, then this
vertex updates its value and sends out potential updates to
its neighbors, consisting of the weight of each outgoing edge
added to the newly found minimum distance. In the first
superstep, only the source vertex will update its value (from
INF to zero) and send updates to its immediate neighbors.
These neighbors in turn will update their values and send

140

16

Additional features
• Combiners
• Aggregators
• Topology mutations

• Partial ordering
• Removal first (Edge à vertex removal)
• Addition (vertex à edge addition)

• Handlers
• User-defined functions to resolve conflicts

• Input/output
• File, GFS, BigTable, etc.

17

Implementation

18

Worker Worker Worker Worker

Job tracker
(Pregel)

Master

Fault tolerance

• Achieved through checkpointing
• At the beginning of a super-step, master

instructs the workers to take a check-point
• When a worker fails --- the master re-

assigns the partition to a new worker, and
restarts from the latest checkpoint

19

Distributed Collections Views

20

Table View Graph View

Dependency GraphTable

Result

Row

Row

Row

Row

Spark Software Stack

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems

IJPEDS-ProgrammingBigDataAnalysis-PrePrint

8 Taylor & Francis and I.T. Consultant

3.2.1 Apache Spark

Apache Spark1 is another top project of Apache Software Foundation for Big
Data analysis. Di↵erently from Hadoop, in which intermediate data are always
stored in distributed file systems, Spark stores data in RAM memory and queries
it repeatedly so as to obtain better performance for some classes of applications
compared to Hadoop (e.g., iterative machine learning algorithms) [13]. A Spark
application in defined as a set of independent stages running on a pool of worker
nodes. A stage is a set of tasks executing the same code on di↵erent partitions of
input data.
Spark and Hadoop are considered the leading open source Big Data systems and

thus are supported by every major Cloud providers. As shown in Figure 4, di↵erent
libraries have been built on top of Spark: Spark SQL for dealing with SQL and Data
Frames,MLlib for machine learning, GraphX for graph-parallel computation, Spark
Streaming for building streaming applications. The execution of a generic Spark
application on a cluster is driven by a central coordinator (i.e., the main process
of the application), which can connect with di↵erent cluster managers, such as
Apache Mesos1, YARN, or Spark Standalone (i.e., a cluster manager available as
part of the Spark distribution). Ambari can be used for provisioning, managing,
and monitoring Spark clusters.

Spark Core
Processing Engine

Ambari
Provisioning, managing and monitoring Spark clusters

Mesos / YARN / Standalone
Cluster Resource Management

HDFS / Amazon S3 / OpenStack Swift / Cassandra
Distributed File System & Storage

Spark SQL
(SQL)

MLlib
(Machine
Learning)

GraphX
(Graph processing)

Spark
Streaming
(Streaming)

Other
Spark

libraries

Figure 4. Spark software stack.

Even though in some classes of applications Spark is considered a better alter-
native to Hadoop, in many others it has limitations that make it complementary
to Hadoop. The main limitation of Spark is that datasets should fit in RAM mem-
ory. In addition, it does not provide its own distributed storage system, which is a
fundamental requirement for Big Data applications. To overcome this lack, Spark
has been designed to run on top of several data sources, such as distributed file
systems (e.g., HDFS), Cloud object storages (e.g., Amazon S3, OpenStack Swift)
and NoSQL databases (e.g., Cassandra).
Spark’s real-time processing capability is increasingly being used into applica-

tions that requires to extract insights quickly from data, such as recommendation
and monitoring systems. For this reason, several big companies exploit Spark for
data analysis purpose: SK Telecom analyzes mobile usage patterns of customers,
Ebay uses Spark for log aggregation, and Kelkoo for product recommendations.

1
https://spark.apache.org

1
http://mesos.apache.org/

21

GraphX
• Tables and Graphs are composable

views of the same physical data

• Each view has its own operators that
exploit the semantics of the view to achieve
efficient execution 22

GraphX Unified
Representation

Graph ViewTable View

View a Graph as a Table

Id

A
M
I
R

SrcId DstId

A M
I M
I A
R I

Property (E)

P5
P6
P7
P8

Property (V)

(P1, P4)
(P2,P4)
(P3, P4)
(P3, P4)

A

M

I

R

Property Graph
Vertex Property Table

Edge Property Table

class Graph [V, E] {
def Graph(vertices: Table[(Id, V)],

edges: Table[(Id, Id, E)])

// Table Views -----------------
def vertices: Table[(Id, V)]
def edges: Table[(Id, Id, E)]
// Transformations ------------------------------
def reverse: Graph[V, E]
def subgraph(pV: (Id, V) => Boolean,

pE: Edge[V,E] => Boolean): Graph[V,E]
def mapV(m: (Id, V) => T): Graph[T,E]
def mapE(m: Edge[V,E] => T): Graph[V,T]
// Joins --
def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E]
def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
// Computation ----------------------------------
def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)],

reduceF: (T, T) => T):Graph[T, E]
}

Graph Operators

24

Part. 2

Part. 1

Vertex Table
(RDD)

B C

A D

F E

A D

Distributed Graphs as RDDs

D

Property Graph

B C

D

E

AA

F

Edge Table
(RDD)

A B

A C

C D

B C

A E

A F

E F

E D

B

C

D

E

A

F

Routing
Table

(RDD)

B

C

D

E

A

F

1

2

1 2

1 2

1

2

2D Vertex Cut Heuristic

Summary
• Graph processing with Pregel/Giraph

• Bulk Synchronous Programming (BSP) model
• Graph processing on Spark with GraphX
• Resources:

• Giraph: http://giraph.apache.org/
• GraphX: https://spark.apache.org/graphx/
• GraphLab: http://graphlab.org/
• Okapi: http://grafos.ml/

26

http://giraph.apache.org/
https://spark.apache.org/graphx/
http://graphlab.org/
http://grafos.ml/

Resources

• Compulsory reading:
• Pregel [SIGMOD’10]

https://kowshik.github.io/JPregel/pregel_paper.pdf

• Recommended reading
– GraphX [OSDI’14]

• Graph processing framework built on top of Spark

– GraphLab [OSDI’12]
• Edge-centric graph processing framework

27

https://kowshik.github.io/JPregel/pregel_paper.pdf

QUESTIONS?

28

