Text Technologies for Data Science

INFR11145

Indexing

Instructor:
Youssef Al Hariri

Pre-lecture

- Lectures 1-4 \rightarrow warmup
- Now, it is getting more serious!
- Lab $1 \rightarrow$ slightly different results
- Tokenisation, stopping, stemming
- Today: two lectures on Indexing
- expect some knowledge in binary numbers "001011101"
- Announcement of CW1 (Friday, October $6^{\text {th }}$)
- Labs \rightarrow Do it On Time
- Piazza!!!!

Lecture Objectives

- Learn about and implement
- Boolean search
- Inverted index
- Positional index

Indexing Process

Pre-processing output

> This is an example sentence of how the pre-processing is applied to text in information retrieval. It includes: Tokenization, Stop Words Removal, and Stemming

exampl sentenc pre process appli text inform retriev includ token stop word remov stem

- Add processed terms to the index
- What is "index"?

Index

- How to match your term in non-linear time?
- Find/Grep:

Sequential search for term

- Index:

Find term locations immediately

Index

absolute error, 437
accuracy, 359
ad hoc search, $3,280,423$
adaptive filtering, 425
adversarial information retrieval, 294
advertising, 218, 371
classifying, 371
contextual, 218-221
agglomerative clustering, 375
anchor text, 21, 56, 105, 280
API, 439, 461
architecture, 13-28
authority, 21, 111
automatic indexing, 400
background probability, see collection
probability
bag of words, 345,451
Bayes classifier, 245
Bayes Decision Rule, 245
Bayes' Rule, 246, 343
Bayes' rule, 342
Bayesian network, 268
bibliometrics, 120
bidding, 218
bigram, 100, 253
BigTable, 57
binary independence model, 246
blog, 111
BM25, 250-252
BM25F, 294
Boolean query, 235
Boolean query language, 24
Boolean retrieval, 235-237
boosting, 448
BPREF, 322
brute force, 331
burstiness, 254
caching, 26, 181
card catalog, 400
case folding, 87
case normalization, 87
categorization, see classification
CBIR, see content-based image retrieval
character encoding, 50, 119
checksum, 60
Chi-squared measure, 202
CJK (Chinese-Japanese-Korean), 50, 119
classification, 3, 339-373
faceted, 224
monothetic, 223, 374
polythetic, 223, 374
classifier, 21
clickthrough, 6, 27, 207, 285, 306
CLIR, see cross-language information retrieval
cluster hypothesis, 389
cluster-based retrieval, 391
clustering, 22, 222-225, 339, 373
co-occurrence, 74, 191
code page, 50
collaborative filtering, 432
collaborative search, 420
collection, 3
collection language model, 256
collection probability, 256, 440
collocation, 74
color histogram, 473
combining evidence, 267-283
combining searches, 441
CombMNZ, 441
community-based question answering, 415
complete-link clusters, 379
compression, 54
lossless, 141
lossy, 142
conditional random field, 122
conflation, see stemming
connected component, 192
content match, 371
content-based image retrieval, 473
context, 115, 201, 211-214
context vector, 206, 464
contingency table, 248
controlled vocabulary, 199, 401
conversion, 49
coordination level match, 257 corpus, 6
cosine correlation, 239
coverage, 8
CQA, 415
crawler, 17, 32
cross-language information retrieval, 226
cross-lingual search, see cross-language
information retrieval
cross-validation, 331

Damerau-Levenshtein distance, 194
dangling link, 107
data mining, 113
database system, 459
DCG, see discounted cumulative gain
deep Web, 41, 448
delta encoding, 144
dendrogram, 375
desktop search, 3, 46
Dice's coefficient, 192
digital reference, 447
Dirichlet smoothing, 258
discounted cumulative gain, 319
discriminative model, 284, 360
distance measure, 374
distributed hash table, 445
distributed information retrieval, 438
distribution, 23
divisive clustering, 375
document, 2
document conversion, 18
document crawler, 17
document data store, 19
document distribution, 180
document slope curve, 64
document statistics, 22
document structure, 101, 269, 459-466
document summary, 215
downcasing, 87
dumping, 366
duplicate documents, 60
dwell time, 27
dynamic page, 42

Indexing

- Search engines vs PDF find or grep?
- Infeasible to scan large collection of text for every "search"
- Find section that has: "UK and Scotland and Money"?!
- Book Index
- For each word, list of "relevant" pages
- Find topic in sub-linear time
- IR Index:
- Data structure for fast finding terms
- Additional optimisations could be applied

Document Vectors

- Represent documents as vectors
- Vector \rightarrow document, cell \rightarrow term
- Values: term frequency or binary (0/1)
- All documents \rightarrow collection matrix

Inverted Index

- Represent terms as vectors
- Vector \rightarrow term, cell \rightarrow document
- Transpose of the collection matrix
- Vector: inverted list

\pm	듷						
2	1	0	2	0	0	1	
1	3	0	1	0	0	0	
1	1	1	1	0	1	0	
1	1	1	1	1	0	0	
1	1	1	1	1	0	1	

D5: He likes to wink, and drink pink ink

Boolean Search

- Boolean: exist / not-exist
- Multiword search: logical operators (AND, OR, NOT)
- Example
- Collection: search Shakespeare's Collected Works
- Boolean query: Brutus AND Caesar AND NOT Calpurnia
- Build a Term-Document Incidence Matrix
- Which term appears in which document
- Rows are terms
- Columns are documents

Collection Matrix

Documents

- Consider $N=1$ million documents, each with about 1000 words.
- $n=1 \mathrm{M} \times 1 \mathrm{~K}=1 \mathrm{~B}$ words
\rightarrow Heap's law $\rightarrow v \approx 500 \mathrm{~K}$
- Matrix size $=500 \mathrm{~K}$ unique terms $\times 1 \mathrm{M}$ documents $=0.5$ trillion 0 's and 1 's entries!
- If all words appear in many documents
$\rightarrow \max \left\{\operatorname{count}(1\right.$'s) $\}=N^{*}$ doc. length $=1 \mathrm{~B}$
- Actually, from Zip's law \rightarrow 250k terms appears once!
- Collection matrix is extremely sparse. (mostly 0's)

Inverted Index: Sparse representation

- For each term t, we must store a list of all documents that contain t.
- Identify each by a docID, a document serial number

Inverted Index Construction

Token stream

Tokenizer

Friends
Romans

Normaliser
Terms (modified tokens)

Friends, Romans, countrymen
$\stackrel{\bullet}{\bullet}$

Step 1: Term Sequence

Doc 1

I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me.

Sequence of (term, Doc ID) pairs

Term	docID
l	1
did	1
enact	1
julius	1
caesar	1
l	1
was	1
killed	1
i' $^{\prime}$	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2
be	2
with	2
caesar	2
the	2
noble	2
brutus	2
hath	2
told	2
you	2
caesar	2
was	2
ambitious	2

Step 2: Sorting

- Sort by:

1) Term
then
2) Doc ID

Term	docID
l	1
did	1
enact	1
julius	1
caesar	1
l	1
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2
be	2
with	2
caesar	2
the	2
noble	2
brutus	2
hath	2
told	2
you	2
caesar	2
was	2
ambitious	2

Term	docID
ambitious	2
be	2
brutus	1
brutus	2
capitol	1
caesar	1
caesar	2
caesar	2
did	1
enact	1
hath	1
l	1
l	1
i'	1
it	1
julius	2
killed	1
killed	1
let	1
me	2
noble	1
so	2
the	2
the	1
told	2
you	2
was	2
was	1
with	2
	2

Step 3: Posting

1. Multiple term entries in a single document are merged
2. Split into Dictionary and Postings
3. Doc. Frequency (df) information is added

Term	docID
ambitious	2
be	2
brutus	1
brutus	2
capitol	1
caesar	1
caesar	2
caesar	2
did	1
enact	1
hath	1
I	1
I	1
i'	1
it	2
julius	1
killed	1
killed	1
let	2
me	1
noble	2
so	2
the	1
the	2
told	2
you	2
was	1
was	2
with	2

term doc. freq. \rightarrow postings lists

Inverted Index: matrix \rightarrow postings

\pm	$\frac{\underline{ㄴ}}{\underline{\underline{I}}}$.	$\begin{aligned} & \text { ひِ } \\ & \underline{\underline{I}} \end{aligned}$	$\frac{Y}{\underline{I}}$	$\begin{aligned} & \text { No } \\ & \stackrel{N}{ \pm} \end{aligned}$	$\frac{.}{3}$	
2	1	0	2	0	0	1	\leftarrow D1: He likes to wink, he likes to drink
1	3	0	1	0	0	0	$\leftarrow \mathrm{D} 2$: He likes to drink, and drink, and drink
1	1	1	1	0	1	0	\leftarrow D3: The thing he likes to drink is ink
1	1	1	1	1	0	0	\leftarrow D4: The ink he likes to drink is pink
1	1	1	1	1	0	1	\leftarrow D5: He likes to wink, and drink pink ink

Inverted Index: with frequency

- Boolean: term \rightarrow DocIDs list
- Frequency: term \rightarrow touples (DocID,count(term)) lists

Query Processing

- Find documents matching query \{ink AND wink\}

1. Load inverted lists for each query word
2. Merge two postings lists \rightarrow Linear merge

- Linear merge $\rightarrow \mathrm{O}(n)$
n : total number of posts for all query words

Phrase Search

- Find documents matching query "pink ink"

1. Find document containing both words
2. Both words has to be a phrase

- Bi-gram Index:

He likes to wink, and drink pink ink Convert to bigrams
He_likes likes_to to_wink wink_and and_drink drink_pink pink_ink

- Bi-gram Index, issues:
- Fast, but index size will explode!
- What about trigram phrases?
- What about proximity? "ink is pink"

Proximity Index

- Terms positions is embedded to the inv. Index
- Called proximity/positional index
- Enables phrase and proximity search
- Toubles (DocID, term position)

Query Processing: Proximity

- Find documents matching query "pink ink"

1. Use Linear merge
2. Additional step: check terms positions

- Proximity search: pos(term1) - pos(term2) < $|w| \rightarrow \# 5($ pink,ink)

Proximity search: data structure

- Possible data structure:
<term: df;
DocNo: pos1, pos2, pos3
DocNo: pos1, pos2, pos3
....... >
- Example:
<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, ..>

Practical

Summary

- Document Vector
- Term Vector
- Inverted Index
- Collection Matrix
- Posting
- Proximity Index
- Query Processing \rightarrow Linear merge

Resources

- Textbook 1: Intro to IR, Chapter 1 \& 2.4
- Textbook 2: IR in Practice, Chapter 5
- Lab 2

