
Text Technologies for Data Science
INFR11145

04-Oct-2023

Indexing
Instructor:

Youssef Al Hariri

2

Youssef Al Hariri, TTDS 2022/2023

Pre-lecture
• Lectures 1-4 à warmup

• Now, it is getting more serious!

• Lab 1 à slightly different results
• Tokenisation, stopping, stemming

• Today: two lectures on Indexing
• expect some knowledge in binary numbers “001011101”

• Announcement of CW1 (Friday, October 6th)

• Labs à Do it On Time

• Piazza!!!!

3

Youssef Al Hariri, TTDS 2022/2023

Lecture Objectives
• Learn about and implement
• Boolean search
• Inverted index
• Positional index

4

Youssef Al Hariri, TTDS 2022/2023

Indexing Process

Documents
acquisition

Text
transformation

Index
creation

A System
and
Method for
…
…………………
…………………
…………………
………..

…………………
…………………
…………………
…………………
…………………

Document
data store

Index

what data
do we want?

format conversion. international?
which part contains “meaning”?

word units? stopping? stemming?

web-crawling
provider feeds
RSS “feeds”

desktop/email

document à unique ID
what can you store?
disk space? rights?

compression?

a lookup table for
quickly finding all docs

containing a word

© Addison Wesley, 2008

Pre-processing

Indexing

5

Youssef Al Hariri, TTDS 2022/2023

Pre-processing output

• Add processed terms to the index
• What is “index”?

This is an example sentence of how the pre-processing is
applied to text in information retrieval. It includes: Tokenization,
Stop Words Removal, and Stemming

exampl sentenc pre process appli text inform retriev includ
token stop word remov stem

6

Youssef Al Hariri, TTDS 2022/2023

Index
• How to match your term in non-linear time?
• Find/Grep:

Sequential search for term
• Index:

Find term locations immediately

7

Youssef Al Hariri, TTDS 2022/2023

Book Index

8

Youssef Al Hariri, TTDS 2022/2023

Indexing
• Search engines vs PDF find or grep?

• Infeasible to scan large collection of text for every “search”

• Find section that has: “UK and Scotland and Money”?!

• Book Index
• For each word, list of “relevant” pages

• Find topic in sub-linear time

• IR Index:
• Data structure for fast finding terms

• Additional optimisations could be applied

9

Youssef Al Hariri, TTDS 2022/2023

Document Vectors
• Represent documents as vectors

• Vector à document, cell à term
• Values: term frequency or binary (0/1)
• All documents à collection matrix

he dr
in

k

in
k

lik
es

pi
nk

th
in

g

w
in

k
2 1 0 2 0 0 1 ß D1: He likes to wink, he likes to drink
1 3 0 1 0 0 0 ß D2: He likes to drink, and drink, and drink
1 1 1 1 0 1 0 ß D3: The thing he likes to drink is ink
1 1 1 1 1 0 0 ß D4: The ink he likes to drink is pink
1 1 1 1 1 0 1 ß D5: He likes to wink, and drink pink ink

number of occurrence of
a term in a document

10

Youssef Al Hariri, TTDS 2022/2023

Inverted Index
• Represent terms as vectors

• Vector à term, cell à document
• Transpose of the collection matrix
• Vector: inverted list

he dr
in

k

in
k

lik
es

pi
nk

th
in

g

w
in

k
2 1 0 2 0 0 1 ß D1: He likes to wink, he likes to drink
1 3 0 1 0 0 0 ß D2: He likes to drink, and drink, and drink
1 1 1 1 0 1 0 ß D3: The thing he likes to drink is ink
1 1 1 1 1 0 0 ß D4: The ink he likes to drink is pink
1 1 1 1 1 0 1 ß D5: He likes to wink, and drink pink ink

11

Youssef Al Hariri, TTDS 2022/2023

Boolean Search
• Boolean: exist / not-exist
• Multiword search: logical operators (AND, OR, NOT)
• Example

• Collection: search Shakespeare's Collected Works
• Boolean query: Brutus AND Caesar AND NOT Calpurnia

• Build a Term-Document Incidence Matrix
• Which term appears in which document
• Rows are terms
• Columns are documents

12

Youssef Al Hariri, TTDS 2022/2023

Collection Matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if document contains term, 0 otherwiseTerms

Documents

Query: Brutus AND Caesar AND NOT Calpurnia
Apply on rows: 110100 AND 110111 AND !(010000) = 100100

13

Youssef Al Hariri, TTDS 2022/2023

Bigger collections?
• Consider N = 1 million documents,

each with about 1000 words.
• n = 1M x 1K = 1B words
è Heap’s law à v ≈ 500K

• Matrix size = 500K unique terms x 1M documents
= 0.5 trillion 0’s and 1’s entries!

• If all words appear in many documents
à max{count(1’s)} = N * doc. length = 1B

• Actually, from Zip’s law à 250k terms appears once!
• Collection matrix is extremely sparse. (mostly 0’s)

1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
.
.
.
.
.

termx

1M

14

Youssef Al Hariri, TTDS 2022/2023

Inverted Index: Sparse representation
• For each term t, we must store a list of all documents

that contain t.
• Identify each by a docID, a document serial number

Dictionary

Posting

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45 173

2 31 54 101
Postings List

Doc number
(sorted)

15

Youssef Al Hariri, TTDS 2022/2023

Inverted Index Construction

Tokenizer

Token stream Friends Romans Countrymen

Normaliser

Terms (modified tokens) friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

21

Documents to
be indexed Friends, Romans, countrymen

93

16

Youssef Al Hariri, TTDS 2022/2023

Step 1: Term Sequence

Sequence of
(term, Doc ID) pairs

I did enact Julius Caesar I was
killed i' the Capitol; Brutus killed
me.

Doc 1

So let it be with Caesar. The
noble Brutus hath told you
Caesar was ambitious

Doc 2

Term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

17

Youssef Al Hariri, TTDS 2022/2023

Step 2: Sorting

Sorting

Term docID
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

• Sort by:
1) Term
then

2) Doc ID

18

Youssef Al Hariri, TTDS 2022/2023

Step 3: Posting
Term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

1. Multiple term entries in
a single document are
merged

2. Split into Dictionary and
Postings

3. Doc. Frequency (df)
information is added

19

Youssef Al Hariri, TTDS 2022/2023

Inverted Index: matrix à postings
he dr

in
k

in
k

lik
es

pi
nk

th
in

g

w
in

k

2 1 0 2 0 0 1 ß D1: He likes to wink, he likes to drink

1 3 0 1 0 0 0 ß D2: He likes to drink, and drink, and drink

1 1 1 1 0 1 0 ß D3: The thing he likes to drink is ink

1 1 1 1 1 0 0 ß D4: The ink he likes to drink is pink

1 1 1 1 1 0 1 ß D5: He likes to wink, and drink pink ink

he

ink
pink

1 2

43

54

3

5

4 5

thing 3
wink 51

drink 1 2 3 4 5

20

Youssef Al Hariri, TTDS 2022/2023

Inverted Index: with frequency
• Boolean: term à DocIDs list
• Frequency: term à touples (DocID,count(term)) lists

he

ink
pink

1:2 2:1

4:13:1

5:14:1

3:1

5:1

4:1 5:1

thing 3:1

wink 5:11:1

drink 1:1 2:3 3:1 4:1 5:1

appeared in
D2 3 times

21

Youssef Al Hariri, TTDS 2022/2023

Query Processing
• Find documents matching query {ink AND wink}

1. Load inverted lists for each query word
2. Merge two postings lists à Linear merge

• Linear merge à O(n)
n: total number of posts for all query words

ink 4:13:1 5:1

wink 5:11:1

 Matches
1: f(0,1) = 0
3: f(1,0) = 0
4: f(1,0) = 0
5: f(1,1) = 1

AND

22

Youssef Al Hariri, TTDS 2022/2023

Phrase Search
• Find documents matching query “pink ink”

1. Find document containing both words
2. Both words has to be a phrase

• Bi-gram Index:
He likes to wink, and drink pink ink

He_likes likes_to to_wink wink_and and_drink drink_pink pink_ink

• Bi-gram Index, issues:
• Fast, but index size will explode!
• What about trigram phrases?
• What about proximity? “ink is pink”

Convert to bigrams

23

Youssef Al Hariri, TTDS 2022/2023

Proximity Index
• Terms positions is embedded to the inv. Index

• Called proximity/positional index
• Enables phrase and proximity search
• Toubles (DocID, term position)

he 1:2 2:1 3:1 4:1 5:1

drink 1:1 2:3 3:1 4:1 5:1

2,4 2,6 2,8

he 1,1 2,1 3,3 4,3 5,1

drink 1,8 3,6

1,5

4,5 5,6

D1: He likes to wink, he likes to drink
D2: He likes to drink, and drink, and drink
D3: The thing he likes to drink is ink
D4: The ink he likes to drink is pink
D5: He likes to wink, and drink pink ink

24

Youssef Al Hariri, TTDS 2022/2023

Query Processing: Proximity
• Find documents matching query “pink ink”

1. Use Linear merge
2. Additional step: check terms positions

• Proximity search:
pos(term1) – pos(term2) < |w| à #5(pink,ink)

ink 4,23,8 5,8

pink 5,74,8

Matches
3: f(1,0) = 0
4: f(1,1) = ? = 0
pos(ink) – pos(pink) == 1?
5: f(1,1) = ? = 1
pos(ink) – pos(pink) == 1?

25

Youssef Al Hariri, TTDS 2022/2023

Proximity search: data structure
• Possible data structure:
 <term: df;
 DocNo: pos1, pos2, pos3

DocNo: pos1, pos2, pos3
 ……. >
• Example:

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

26

Youssef Al Hariri, TTDS 2022/2023

Practical

27

Youssef Al Hariri, TTDS 2022/2023

Summary
• Document Vector
• Term Vector
• Inverted Index
• Collection Matrix
• Posting
• Proximity Index
• Query Processing à Linear merge

28

Youssef Al Hariri, TTDS 2022/2023

Resources
• Textbook 1: Intro to IR, Chapter 1 & 2.4
• Textbook 2: IR in Practice, Chapter 5
• Lab 2

