Text Technologies for Data Science

INFR11145

Ranked IR

Instructor:
Youssef Al Hariri
Pre-Lecture

• Lab 2 → Share results on Piazza
• CW1
 • Final part depends on this lecture (+ Lab3)
 • You can have your report ready from today
 • Test collection to be released in 2 weeks
 • Silence period !!!!
• Hint: Linear-merge
 • No need to implement. A simply intersection/union function shall do the job for your CW
Pre-Lecture

• Labs results:
 • We won’t provide the answers to the labs, but …
 • You already shared the answers and Piazza, and we acknowledged to be correct!

• Piazza discussions on Lab results
 • Amazing discussions are out there (e.g. Q)
 • Why results can be different?
 • Tokenisation is the key (how you handle special strings: numbers, urls, symbols … etc)

• For CW, take it easy, our automatic marker handle these valid simple variations
Pre-Lecture

• System speed
 • We won’t punish on slow systems (unless extremely unnecessary slow, like process in over an hour)
 • Good system speed:
 • Preprocessing and indexing for the 1K docs: few secs
 • Loading index from desk before search: 1-5 secs
 • Processing query and getting results: < 1 sec
• What if my system is much slower?
 • It is OK for now, but try to learn later some coding techniques to speed your processing (important for group project)
 • Think about: loops, regex, data structure (lists vs dic) … etc.

• Search: Load index & search (index should be ready)
Lecture Objectives

• Learn about Ranked IR
 • TFIDF
 • VSM
 • SMART notation

• Implement:
 • TFIDF
Boolean Retrieval

• Thus far, our queries have all been Boolean.
 • Documents either: “match” or “no match”.

• Good for expert users with precise understanding of their needs and the collection.
 • Patent search uses sophisticated sets of Boolean queries and check hundreds of search results
 (car OR vehicle) AND (motor OR engine) AND NOT (cooler)

• Not good for the majority of users.
 • Most incapable of writing Boolean queries.
 • Most don’t want to go through 1000s of results.
 • This is particularly true for web search
 • Question: What is the most unused web-search feature?
Ranked Retrieval

• Typical queries: free text queries
• Results are “ranked” with respect to a query
• Large result sets are not an issue
 • We just show the top k (≈ 10) results
 • We don’t overwhelm the user
• Criteria:
 • Top ranked documents are the most likely to satisfy user’s query
 • Score is based on how well documents match a query
 \[Score(d, q) \]
Old Example

• Find documents matching query \{ink \ wink\}
 1. Load inverted lists for each query word
 2. Merge two postings lists → Linear merge

• Apply function for matches
 • Boolean: exist / not exist = 0 or 1
 • Ranked: \(f(tf, df, length, \ldots) = 0 \rightarrow 1 \)

\[
\begin{align*}
ink & \quad 3:1 \quad 4:1 \quad 5:1 \\
\text{wink} & \quad 1:1 \quad 5:1
\end{align*}
\]

Matches

1: \(f(0,1) \)
3: \(f(1,0) \)
4: \(f(1,0) \)
5: \(f(1,1) \)
Function example: Jaccard coefficient

- a commonly used measure of overlap of two sets A and B

- $jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$

- $jaccard(A, B) = 1 \Rightarrow A = B$

- $jaccard(A, B) = 0 \Rightarrow A \cap B = 0$

- Example:
 - D1 \cup D2 = {he, likes, to, wink, and, drink}
 - D1 \cap D2 = {he, likes, to, drink}
 - $jaccard(D1, D2) = \frac{4}{6} = 0.6667$
Jaccard coefficient: Issues

- Does not consider term frequency (how many times a term occurs in a document)
- It treats all terms equally!
 - How about rare terms in a collection? more informative than frequent terms.
 - *He likes to drink*, shall “to” == “drink”?
- Needs more sophisticated way of length normalization
 - |D1| = 3, |D2| = 1000!
 - D1 → Q, D2 → D
Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query: ![Yellow, Red, Green balls]
- Which is the least relevant document?
- Which is the most relevant document?
TFIDF

- **TFIDF:**
 Term Frequency, Inverse Document Frequency

- **tf(t,d):**
 number of times term t appeared in document d
 - As $tf(t,d) \uparrow \Rightarrow$ importance of t in $d \uparrow$
 - Document about IR, contains “retrieval” more than others

- **df(t):**
 number of documents term t appeared in
 - As $df(d) \uparrow \Rightarrow$ importance if t in a collection \downarrow
 - “the” appears in many document \Rightarrow not important
 - “FT” is not important word in financial times articles
DF, CF, & IDF

• DF ≠ CF (collection frequency)
 • $cf(t) =$ total number of occurrences of term t in a collection
 • $df(t) \leq N$ (N: number of documents in a collection)
 • $cf(t)$ can be $\geq N$

• DF is more commonly used in IR than CF
 • CF is still used

• $idf(t)$: inverse of $df(t)$
 • As $idf(t)$ ↑↑ \rightarrow rare term \rightarrow importance ↑↑
 • $idf(t)$ \rightarrow measure of the informativeness of t
DF vs CF

<table>
<thead>
<tr>
<th></th>
<th>he</th>
<th>drink</th>
<th>ink</th>
<th>likes</th>
<th>pink</th>
<th>think</th>
<th>wink</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- **D1**: He likes to wink, he likes to drink
- **D2**: He likes to drink, and drink, and drink
- **D3**: The thing he likes to drink is ink
- **D4**: The ink he likes to drink is pink
- **D5**: He likes to wink, and drink pink ink

```
5 5 3 5 2 1 2 DF
6 7 3 6 2 1 2 CF
```
IDF: formula

\[idf(t) = \log_{10}\left(\frac{N}{df(t)}\right) \]

- Log scale used to dampen the effect of IDF
- Suppose \(N = 1 \) million

<table>
<thead>
<tr>
<th>term</th>
<th>(df(t))</th>
<th>(idf(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>sky</td>
<td>1,000</td>
<td>3</td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td>2</td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td>0</td>
</tr>
</tbody>
</table>
TFIDF term weighting

• One the best known term weights schemes in IR
 • Increases with the number of occurrences within a document
 • Increases with the rarity of the term in the collection

• Combines TF and IDF to find the weight of terms

\[w_{t,d} = \left(1 + \log_{10} tf(t,d) \right) \times \log_{10} \left(\frac{N}{df(t)} \right) \]

• For a query \(q \) and document \(d \), retrieval score \(f(q,d) \):

\[Score(q,d) = \sum_{t \in q \cap d} w_{t,d} \]
Should terms be treaded the same?

• Collection of 5 documents (balls = terms)
• Query **the destructive storm**
• Which is the least relevant document?
• Which is the most relevant document?
Document/Term vectors with tfidf

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>5.25</td>
<td>3.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0</td>
<td>1.51</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0</td>
<td>1.9</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

→ Vector Space Model
Vector Space Model

- Documents and Queries are presented as vectors
- Match \((Q, D) = Distance \) between vectors
- Example: \(Q = \text{Gossip Jealous} \)
- Euclidean Distance?
 - *Distance between the endpoints of the two vectors*
- Large for vectors of diff. lengths
- Take a document \(d \) and append it to itself. Call this document \(d' \).
 - “Semantically” \(d \) and \(d' \) have the same content
 - Euclidean distance can be quite large
Angle Instead of Distance

• The angle between the two documents is 0, corresponding to maximal similarity.

• Key idea: Rank documents according to angle with query.
 • Rank documents in increasing order of the angle with query
 • Rank documents in decreasing order of cosine (query, document)

• Cosine of angle = projection of one vector on the other
Length Normalization

• A vector can be normalized by dividing each of its components by its length – for this we use the L_2 norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

• Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)

• Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 • Long and short documents now have comparable weights
Example

- \(D_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \Rightarrow \| \overrightarrow{D_1} \|_2 = \sqrt{1 + 9 + 4} = 3.74 \)

- \(D_{1\text{ normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix} \)

- \(D_2 = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix} \Rightarrow \| \overrightarrow{D_1} \|_2 = \sqrt{9 + 81 + 36} = 11.25 \)

- \(D_{2\text{ normalized}} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix} \)
Cosine “Similarity” (Query, Document)

- \vec{q}_i is the tf-idf weight of term i in the query
- \vec{d}_i is the tf-idf weight of term i in the document

For normalized vectors:

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{\lvert V \rvert} q_i d_i$$

For non-normalized vectors:

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{\|\vec{q}\| \|\vec{d}\|} = \frac{\vec{q}}{\|\vec{q}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|} = \frac{\sum_{i=1}^{\lvert V \rvert} q_i d_i}{\sqrt{\sum_{i=1}^{\lvert V \rvert} q_i^2} \sqrt{\sum_{i=1}^{\lvert V \rvert} d_i^2}}$$
Algorithm

\texttt{CosineScore}(q)

1. \texttt{float Scores}[N] = 0
2. \texttt{float Length}[N]
3. \texttt{for each} query term \(t \)
4. \texttt{do} calculate \(w_{t,q} \) and fetch postings list for \(t \)
5. \hspace{1em} \texttt{for each} pair \((d, tf_{t,d})\) in postings list
6. \hspace{2em} \texttt{do} \(Scores[d] += w_{t,d} \times w_{t,q} \)
7. \texttt{Read the array Length}
8. \texttt{for each} \(d \)
9. \hspace{1em} \texttt{do} \(Scores[d] = Scores[d] / Length[d] \)
10. \texttt{return Top K components of Scores[]}
TFIDF Variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>n (no)</td>
<td>n (none)</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>t (idf)</td>
<td>c (cosine)</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>p (prob idf)</td>
<td>u (pivoted)</td>
</tr>
<tr>
<td>b (boolean)</td>
<td></td>
<td>b (byte size)</td>
</tr>
<tr>
<td>L (log ave)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Many search engines allow for different weightings for queries vs. documents
- **SMART** Notation: use notation \(ddd.qqq \), using the acronyms from the table
- A very standard weighting scheme is: \(lnc.ltc \)
“OR” operator, then:

\[
Score(q, d) = \sum_{t \in q \cap d} \left(1 + \log_{10} tf(t, d)\right) \times \log_{10} \left(\frac{N}{df(t)}\right)
\]
Summary of Steps:

• Represent the query as a weighted $tf-idf$ vector
• Represent each document as a weighted $tf-idf$ vector
• Compute the cosine similarity score for the query vector and each document vector
• Rank documents with respect to the query by score
• Return the top K (e.g., $K = 10$) to the user
Retrieval Output

• For a query q_1, the output would be a list of documents ranked according to the $score(q_1, d)$

• Possible output format:

<table>
<thead>
<tr>
<th>Query id</th>
<th>Document id</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>710</td>
<td>0.9234</td>
</tr>
<tr>
<td>1</td>
<td>213</td>
<td>0.7678</td>
</tr>
<tr>
<td>1</td>
<td>103</td>
<td>0.6761</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>0.6556</td>
</tr>
<tr>
<td>1</td>
<td>501</td>
<td>0.4301</td>
</tr>
</tbody>
</table>

Query id | Document id | Score
Resources

• Text book 1: Intro to IR, Chapter 6.2 → 6.4
• Text book 2: IR in Practice, Chapter 7

• Lab 3