



# **Text Technologies for Data Science** INFR11145

# **Ranked IR**

Instructor: Youssef Al Hariri

11-Oct-2023

### **Pre-Lecture**

- Lab 2  $\rightarrow$  Share results on Piazza
- CW1
  - Final part depends on this lecture (+ Lab3)
  - You can have your report ready from today
  - Test collection to be released in 2 weeks
  - Silence period !!!!
- Hint: Linear-merge
  - No need to implement. A simply intersection/union function shall do the job for your CW



### **Pre-Lecture**

- Labs results:
  - We won't provide the answers to the labs, but ...
  - You already shared the answers and Piazza, and we acknowledged to be correct!
- Piazza discussions on Lab results
  - Amazing discussions are out there (e.g. Q)
  - Why results can be different?
    - Tokenisation is the key (how you handle special strings: numbers, urls, symbols ... etc)
- For CW, take it easy, our automatic marker handle these *valid* simple variations



### **Pre-Lecture**

- System speed
  - We won't punish on slow systems (unless extremely unnecessary slow, like process in over an hour)
  - Good system speed:
    - Preprocessing and indexing for the 1K docs: few secs
    - Loading index from desk before search: 1-5 secs
    - Processing query and getting results: < 1 sec
  - What if my system is much slower?
    - It is OK for now, but try to learn later some coding techniques to speed your processing (important for group project)
    - Think about: loops, regex, data structure (lists vs dic) ... etc.
- Search: Load index & search (*index should be ready*)





# **Lecture Objectives**

- <u>Learn</u> about Ranked IR
  - TFIDF
  - VSM
  - SMART notation
- Implement:
  - TFIDF



## **Boolean Retrieval**

- Thus far, our queries have all been Boolean.
  - Documents either: "match" or "no match".
- Good for <u>expert users</u> with precise understanding of their needs and the collection.
  - Patent search uses sophisticated sets of Boolean queries and check hundreds of search results (car OR vehicle) AND (motor OR engine) AND NOT (cooler)
- Not good for the majority of users.
  - Most incapable of writing Boolean queries.
  - Most don't want to go through 1000s of results.
    - This is particularly true for web search
    - Question: What is the most unused web-search feature?





## **Ranked Retrieval**

- Typical queries: free text queries
- Results are "ranked" with respect to a query
- Large result sets are not an issue
  - We just show the top k (  $\approx$  10) results
  - We don't overwhelm the user
- Criteria:
  - Top ranked documents are the most likely to satisfy user's query
  - Score is based on how well documents match a query Score(d,q)



# **Old Example**

- Find documents matching query {ink wink}
   1. Load inverted lists for each query word
   2. Merge two postings lists → Linear merge
- Apply function for matches
  - Boolean: exist / not exist = 0 or 1
  - <u>Ranked</u>:  $f(tf, df, length, ....) = 0 \rightarrow 1$



Matches 1: f(0,1) 3: f(1,0) 4: f(1,0) 5: f(1,1)



# **Function example: Jaccard coefficient**

- a commonly used measure of overlap of two sets *A* and *B*
- $jaccard(A,B) = \frac{|A \cap B|}{|A \cup B|}$
- $jaccard(A, B) = 1 \rightarrow A = B$
- $jaccard(A, B) = 0 \rightarrow A \cap B = 0$
- Example:
  - $D1 \cup D2 = \{he, likes, to, wink, and, drink\}$
  - $D1 \cap D2 = \{he, likes, to, drink\}$
  - $jaccard(D1, D2) = \frac{4}{6} = 0.6667$

**D1:** He likes to wink, he likes to drink **D2:** He likes to drink, and drink, and drink



# **Jaccard coefficient: Issues**

- Does not consider term frequency (how many times a term occurs in a document)
- It treats all terms equally!
  - How about rare terms in a collection? more informative than frequent terms.
  - *He likes to drink*, shall "to" == "drink"?
- Needs more sophisticated way of length normalization
  - |D1| = 3, |D2| = 1000!
  - D1  $\rightarrow$  Q, D2  $\rightarrow$  D



# Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query
- Which is the least relevant document?
- Which is the most relevant document?



![](_page_10_Picture_6.jpeg)

# TFIDF

#### • TFIDF:

<u>Term Frequency</u>, <u>Inverse</u> <u>D</u>ocument <u>Frequency</u>

• *tf(t,d)*:

number of times term *t* appeared in document *d* 

- As  $tf(t,d) \uparrow \uparrow \rightarrow$  importance of t in  $d \uparrow \uparrow$
- Document about IR, contains "retrieval" more than others
- *df(t)*: number of documents term *t* appeared in
  - As  $df(d) \uparrow \uparrow \rightarrow$  importance if *t* in a collection  $\downarrow \downarrow$ 
    - "the" appears in many document  $\rightarrow$  not important
    - "FT" is not important word in financial times articles

![](_page_11_Picture_11.jpeg)

# DF, CF, & IDF

- **DF ≠ CF** (collection frequency)
  - *cf(t)* = total number of occurrences of term *t* in a collection
  - $df(t) \leq N$  (N: number of documents in a collection)
  - *cf(t)* can be ≥ *N*
- **DF** is more commonly used in IR than **CF** 
  - **CF** is still used
- *idf(t)*: inverse of *df(t)* 
  - As  $idf(t) \uparrow \uparrow \rightarrow$  rare term  $\rightarrow$  importance  $\uparrow \uparrow$
  - $idf(t) \rightarrow$  measure of the informativeness of t

![](_page_12_Picture_10.jpeg)

![](_page_13_Picture_0.jpeg)

| he | drink | ink | likes | pink | think | wink |              |
|----|-------|-----|-------|------|-------|------|--------------|
| 2  | 1     | 0   | 2     | 0    | 0     | 1    | $\leftarrow$ |
| 1  | 3     | 0   | 1     | 0    | 0     | 0    | ←            |
| 1  | 1     | 1   | 1     | 0    | 1     | 0    | ÷            |
| 1  | 1     | 1   | 1     | 1    | 0     | 0    | ÷            |
| 1  | 1     | 1   | 1     | 1    | 0     | 1    | ÷            |
|    |       |     |       |      |       |      |              |
| 5  | 5     | 3   | 5     | 2    | 1     | 2    | DF           |
| 6  | 7     | 3   | 6     | 2    | 1     | 2    | CF           |

- ← D1: He likes to wink, he likes to drink
- ← D2: He likes to drink, and drink, and drink
- ← D3: The thing he likes to drink is ink
- ← D4: The ink he likes to drink is pink
  - ← **D5:** He likes to wink, and drink pink ink

![](_page_13_Picture_7.jpeg)

![](_page_14_Picture_0.jpeg)

 $idf(t) = log_{10}(\frac{N}{df(t)})$ 

Log scale used to dampen the effect of IDF

• Suppose N = 1 million  $\rightarrow$ 

| term      | df(t)     | idf(t) |
|-----------|-----------|--------|
| calpurnia | 1         | 6      |
| animal    | 100       | 4      |
| sky       | 1,000     | 3      |
| fly       | 10,000    | 2      |
| under     | 100,000   | 1      |
| the       | 1,000,000 | 0      |

![](_page_14_Picture_5.jpeg)

THE UNIVERSITY of EDINBURGH

# **TFIDF term weighting**

- One the best known term weights schemes in IR
  - Increases with the number of occurrences within a document
  - Increases with the rarity of the term in the collection
- Combines TF and IDF to find the weight of terms  $w_{t.d} = (1 + log_{10}tf(t,d)) \times log_{10}(\frac{N}{df(t)})$
- For a query q and document d, retrieval score f(q,d):

$$Score(q,d) = \sum_{t \in q \cap d} w_{t,d}$$

![](_page_15_Picture_7.jpeg)

## Should terms be treaded the same?

- Collection of 5 documents (balls = terms)
- Query
   O
   C
   the destructive storm
- Which is the least relevant document?
- Which is the most relevant document?

![](_page_16_Figure_5.jpeg)

<sup>C</sup>EDINBURGH

### **Document/Term vectors with tfidf**

|           | Antony and Cleopatra | Julius Caesar | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|---------------|-------------|--------|---------|---------|
| Antony    | 5.25                 | 3.18          | 0           | 0      | 0       | 0.35    |
| Brutus    | 1.21                 | 6.1           | 0           | 1      | 0       | 0       |
| Caesar    | 8.59                 | 2.54          | 0           | 1.51   | 0.25    | 0       |
| Calpurnia | 0                    | 1.54          | 0           | 0      | 0       | 0       |
| Cleopatra | 2.85                 | 0             | 0           | 0      | 0       | 0       |
| mercy     | 1.51                 | 0             | 1.9         | 0.12   | 5.25    | 0.88    |
| worser    | 1.37                 | 0             | 0.11        | 4.15   | 0.25    | 1.95    |

#### → Vector Space Model

![](_page_17_Picture_3.jpeg)

# **Vector Space Model**

- Documents and Queries are presented as vectors
- Match (Q,D) = Distance between vectors
- Example: Q= Gossip Jealous
- Euclidean Distance? Distance between the endpoints of the two vectors

![](_page_18_Figure_5.jpeg)

- Large for vectors of diff. lengths
- Take a document d and append it to itself. Call this document d'.
  - "Semantically" d and d' have the same content
  - Euclidean distance can be quite large

![](_page_18_Picture_10.jpeg)

EDINBURGH

# **Angle Instead of Distance**

- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query.
  - Rank documents in increasing order of the angle with query
  - Rank documents in decreasing order of cosine (query, document)
- Cosine of angle = projection of one vector on the other

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

# **Length Normalization**

 A vector can be normalized by dividing each of its components by its length – for this we use the L<sub>2</sub> norm:

$$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L<sub>2</sub> norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
  - Long and short documents now have comparable weights

![](_page_20_Picture_6.jpeg)

EDINBURGH

![](_page_21_Picture_0.jpeg)

• 
$$D1 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \Rightarrow \|\overline{D1}\|_2 = \sqrt{1+9+4} = 3.74$$
  
•  $D1_{normalized} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$   
•  $D2 = \begin{bmatrix} 3 \\ 9 \\ 6 \end{bmatrix} \Rightarrow \|\overline{D1}\|_2 = \sqrt{9+81+36} = 11.25$   
•  $D2_{normalized} = \begin{bmatrix} 0.267 \\ 0.802 \\ 0.535 \end{bmatrix}$ 

THE UNIVERSITY of EDINBURGH

# **Cosine "Similarity" (Query, Document)**

- $\vec{q}_i$  is the tf-idf weight of term *i* in the query
- $\vec{d}_i$  is the tf-idf weight of term *i* in the document
- For normalized vectors:

$$\cos(\vec{q},\vec{d}) = \vec{q}\cdot\vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

• For non-normalized vectors:

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{\|\vec{q}\| \|\vec{d}\|} = \frac{\vec{q}}{\|\vec{q}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|} = \frac{\sum_{i=1}^{|V|} \sum_{j=1}^{|V|} q_{j}}{\left(\sum_{i=1}^{|V|} q_{i}\right)^{N}}$$

![](_page_22_Figure_7.jpeg)

 $q_i d_i$ 

# Algorithm

 $\operatorname{COSINESCORE}(q)$ 

- 1 float Scores[N] = 0
- 2 float Length[N]
- 3 for each query term t
- 4 **do** calculate  $w_{t,q}$  and fetch postings list for t
- 5 **for each**  $pair(d, tf_{t,d})$  in postings list
- 6 **do** Scores[d]+ =  $w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]

# **TFIDF Variants**

![](_page_24_Figure_1.jpeg)

- Many search engines allow for different weightings for queries vs. documents
- **SMART** Notation: use notation *ddd.qqq*, using the acronyms from the table
- A very standard weighting scheme is: *Inc.Itc*

![](_page_24_Picture_6.jpeg)

THE UNIVERSITY of EDINBURGH

# For Lab and CW

![](_page_25_Figure_1.jpeg)

"OR" operator, then:  $Score(q,d) = \sum_{t \in q \cap d} (1 + \log_{10} tf(t,d)) \times \log_{10}(\frac{N}{df(t)})$ 

![](_page_25_Picture_3.jpeg)

# **Summary of Steps:**

- Represent the query as a weighted *tf-idf* vector
- Represent each document as a weighted *tf-idf* vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

![](_page_26_Picture_6.jpeg)

# **Retrieval Output**

- For a query q<sub>1</sub>, the output would be a list of documents ranked according to the score(q<sub>1</sub>,d)
- Possible output format:

![](_page_27_Figure_3.jpeg)

![](_page_27_Picture_4.jpeg)

#### Resources

- Text book 1: Intro to IR, Chapter 6.2  $\rightarrow$  6.4
- Text book 2: IR in Practice, Chapter 7

• Lab 3

![](_page_28_Picture_4.jpeg)