

Text Technologies for Data Science INFR11145

Ranked Retrieval (2)

Instructor: Youssef Al Hariri

Lecture Objectives

- Learn about Probabilistic models
 - BM25

Learn about LM for IR

Recall: VSM & TFIDF term weighting

Combines TF and IDF to find the weight of terms

$$w_{t.d} = \left(1 + log_{10}tf(t,d)\right) \times log_{10}\left(\frac{N}{df(t)}\right)$$

• For a query q and document d, retrieval score f(q,d):

$$Score(q,d) = \sum_{t \in q \cap d} w_{t,d}$$

- TFIDF observations Can we do better?
 - Term appearing more in a doc gets higher weight (TF)
 - First occurrences are more important (log)
 - Rare terms are more important (IDF)
 - Bias towards longer documents

IR Model

- VSM is very heuristic in nature
 - No notion of relevance is there (still works well)
 - Any weighting scheme, similarity measure can be used
 - Components not interpretable \rightarrow no guide for what to try next
 - More engineering rather than theory → tweak, run, observe, tweak ...
 - Very popular, hard to beat, strong baseline
 - Easy to adapt good ideas from other models
- Probabilistic Model of retrieval
 - Mathematical formulisation for relevant / irrelevant sets
 - Explicitly defines random variables (R,Q,D)
 - Specific about what their values are
 - State the assumptions behind each step
 - Watch out for contradictions

Probabilistic Models

Concept: Uncertainty is inherent part of IR process

Probability theory is strong foundation for representing

and manipulating uncertainty

 Probability Ranking Principle (1977)

Stephan Robertson

Probability Ranking Principle

- "If a reference retrieval system's response to each request is a <u>ranking of the documents</u> in the collection in order of <u>decreasing probability of relevance</u> to the user who submitted the request,
- where the probabilities are <u>estimated as accurately as</u> <u>possible</u> on the basis of whatever data have been made available to the system for this purpose,
- the overall <u>effectiveness</u> of the system to its user will be the <u>best that is obtainable</u> on the basis of those data."

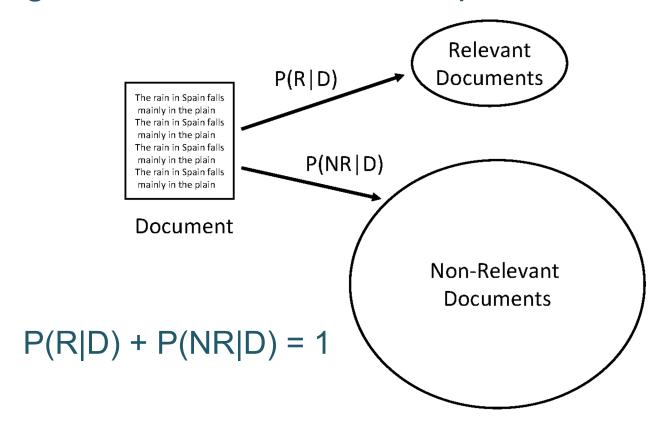
Basis for most probabilistic approaches for IR

Formulation of PRP

- Rank docs by probability of relevance
 - $P(R|D_{r1}) > P(R|D_{r2}) > P(R|D_{r3}) > P(R|D_{r4}) >$
- Estimate probability as accurate as possible
 - $P_{est}(R|D) \approx P_{true}(R|D)$
- Estimate with all possibly available data
 - P_{est}(R | doc, session, context, user profile, ...)
- Best possible accuracy can be achieved with that data
 - → the perfect IR system
 - Is it really doable?
- How to estimate the probability of relevance?

PRP Concept

Imagine IR as a classification problem



• Document D is relevant if P(R|D) > P(NR|D)

Probability of Relevance

- What is P_{true}(rel | doc, query, session, user, ...)?
 - Isn't relevance just the user's opinion?
 - User decides relevant or not, what is the "probability" thing?
- Search algorithm cannot look into your head (yet!)
 - Relevance depends on factors that algorithm cannot observe
 - SIGIR 2016 best paper award: Understanding Information Need: an fMRI Study
- Different users may disagree on relevance of the same doc
 - Even similar users, doing the same task, in the same context
- P_{true} (rel | Q, D):
 - Proportion of all unseen users / context / tasks for which D would have judged relevant to Q
- Similar to: P(die=6 | even and not square)

Okapi BM25 Model

- Based on the probabilistic model
 - A document D is relevant if P(R=1|D) > P(R=0|D)
- Extension to the "binary independence model"
 - Binary features: Document represented by a vector of binary features indicating term occurrence
 - Assume term independence (Naïve Bayes assumption)
 → BOW trick
- In 1995, Stephan Robertson with his group came up with the **BM25** Formula as part of the **Okapi** project.
- It outperformed all other systems in TREC
- Popular and effective ranking algorithm

Okapi BM25 Ranking Function

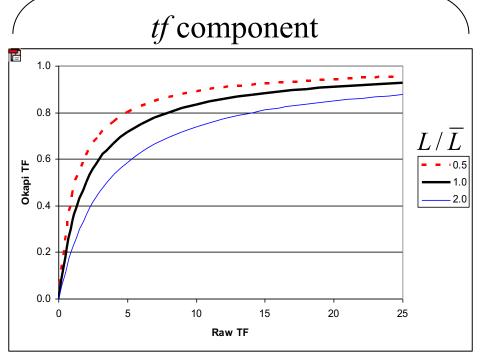
- Let L_d be the number of terms in document d
- Let \overline{L} be the average number of terms in a document

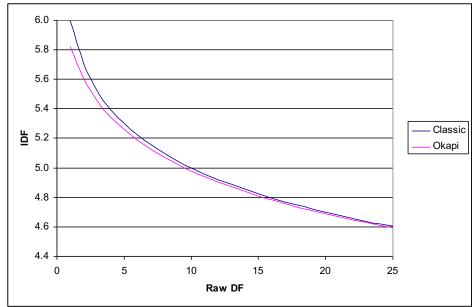
$$w_{t.d} = \frac{tf_{t,d}}{k.\frac{L_d}{\bar{L}} + tf_{t,d} + 0.5} \times log_{10} \left(\frac{N - df_t + 0.5}{df_t + 0.5}\right)$$

Best practices: k=1.5

Okapi BM25 Ranking Function

$$w_{t.d} = \frac{tf_{t,d}}{1.5\frac{L_d}{\bar{L}} + tf_{t,d} + 0.5} \times log_{10} \left(\frac{N - df_t + 0.5}{df_t + 0.5}\right)$$



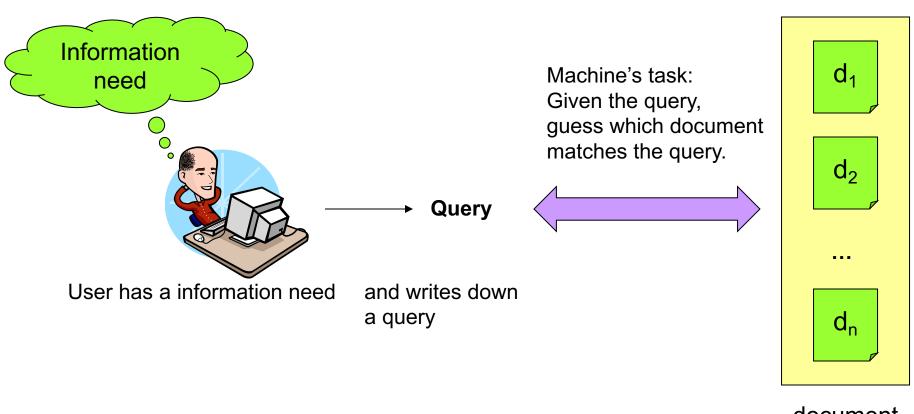


Probabilistic Model in IR

- Focuses on the probability of relevance of docs
- Could be mathematically proved
- Different ways to apply it
- BM25 is the most common formula for it

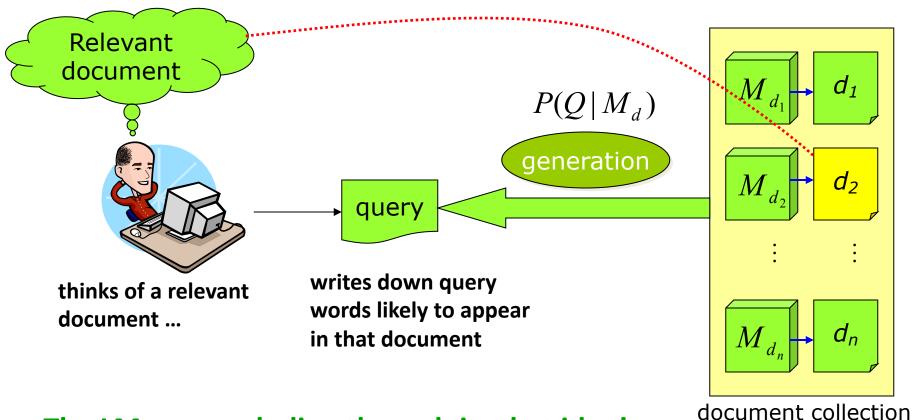
What other models could be still used in IR?

"Noisy-Channel" Model of IR



document collection

IR based on Language Model (LM)



- The LM approach directly exploits that idea!
- o a document is a good match to a query if the document model is likely to generate the query

Concept

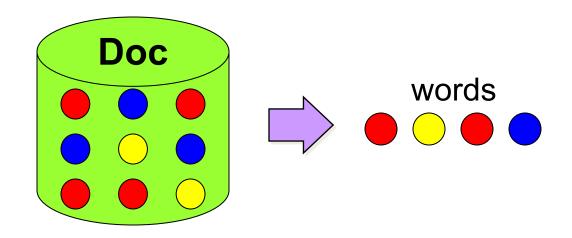
- Coming up with good queries?
 - Think of words that would likely appear in a relevant doc
 - Use those words as the query
- The language modeling approach to IR directly models that idea
 - a document is a good match to a query if the document model is likely to generate the query
 - happens if the document contains the query words often.
- Build a probabilistic language model M_d from each document d
- Rank documents based on the probability of the model generating the query: $P(q|M_d)$.

Language Model (LM)

- A language model is a probability distribution over strings drawn from some vocabulary
- A topic in a document or query can be represented as a language model
 - i.e., words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model

Unigram LM

Terms are randomly drawn from a document (with replacement)



$$P(\bullet \circ \bullet) = P(\bullet) \times P(\circ) \times P(\bullet) \times P(\bullet)$$
$$= (4/9) \times (2/9) \times (4/9) \times (3/9)$$

Example

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
a	0.1	likes	0.03 0.02
frog	0.01	that	0.04

- This is a one-state probabilistic finite-state automaton a unigram language model.

Comparing LMs

- M_{d1}
 LM generated from Doc 1
- M_{d2}
 LM generated from Doc 2
- Try to generate sentence
 S from M_{d1} & M_{d2}

Model M _{d1}					
P(w)	W				
0.2	the				
0.0001	yon				
0.01	class				
0.0005	maiden				
0.0003	sayst				
0.0001	pleaseth				

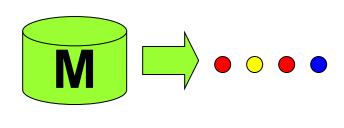
Model M _{d2}					
P(w)	w				
0.2	the				
0.1	yon				
0.001	class				
0.01	maiden				
0.03	sayst				
0.02	pleaseth				

text:	<u>the</u>	<u>class</u>	<u>pleaseth</u>	<u>yon</u>	<u>maiden</u>	<u>P(S)</u>
M_{d1} :	0.2	0.01	0.0001	0.0001	0.0005	0.00000000000001
M _{d2} :	0.2	0.001	0.02	0.1	0.01	0.00000004

 $P(text|M_{d2}) > P(text|M_{d1})$

Stochastic Language Models

- A statistical model for generating text
 - Probability distribution over strings in a given language



Unigram and Higher-order LM

$$P(\bullet \circ \bullet \bullet)$$
= $P(\bullet) P(\bullet|\bullet) P(\bullet|\bullet \circ) P(\bullet|\bullet \circ \bullet)$

Unigram Language Models

Bigram (generally, n-gram) Language Models
 P () P (|) P (|) P (|)

LM in IR

- Each document is treated as basis for a LM.
- Given a query q, rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- P(q) is the same for all documents \rightarrow ignore
- P(d) is the prior often treated as the same for all d
 - But we can give a prior to "high-quality" documents, e.g., those with high PageRank (later to be discussed).
- P(q|d) is the probability of q given d.
- So to rank documents according to relevance to q, ranking according to P(q|d) and P(d|q) is equivalent

LM in IR: Basic idea

- We attempt to model the <u>query generation process</u>.
- Then we <u>rank documents</u> by the probability that a <u>query would be observed</u> as a random sample from the respective document model.

• That is, we rank according to P(q|d).

P(q|d)

Query Likelihood Model

 We will make the conditional independence assumption.

$$P(q|M_d) = P(\langle t_1, ..., t_{|q|} \rangle | M_d) = \prod_{1 \le k \le |q|} P(t_k | M_d)$$

|q|: length of q; t_k : token occurring at position k in q

This is equivalent to:

$$P(q|M_d) = \prod_{each \ term \ t \ in \ q} P(t|M_d)^{tf_{t,q}}$$

 $tf_{t,q}$: term frequency (# occurrences) of t in q

Multinomial model (omitting constant factor)

Parameter estimation

• Probability of a term t in a LM M_d using Maximum Likelihood Estimation (MLE)

$$P(t|M_d) = \frac{tf_{t,d}}{|d|}$$

|*d*|: length of *d*;

 $tf_{t,d}$: # occurrences of t in d

• Probability of a query q to be noticed in a LM M_d :

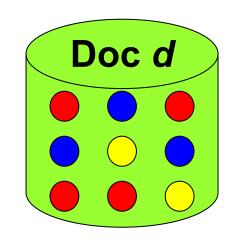
$$P(q|M_d) = \prod_{\forall t \in q} \left(\frac{tf_{t,d}}{|d|}\right)^{tf_{t,q}}$$

Example

$$P(\bullet \circ \bullet) = P(\bullet)^{2} \times P(\circ) \times P(\bullet)$$

$$= (4/9)^{2} \times (2/9) \times (3/9) = 0.0146$$

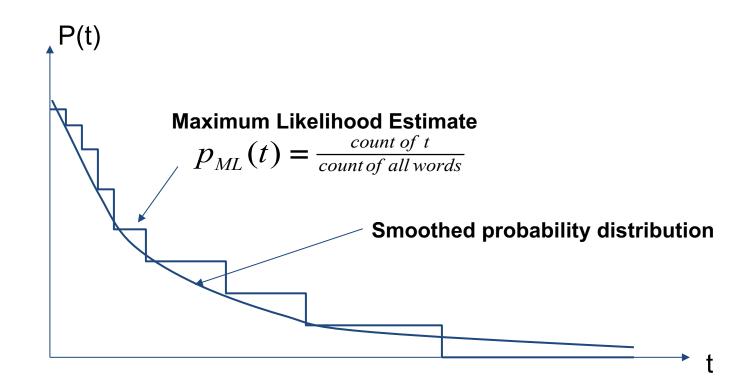
$$P(\bullet \circ \bullet)$$



- Is that fair?
 - In VSM, S(Q,D) was summation, works more like <u>OR</u> in Boolean search. Missing one term reduces score only
 - In language model, S(Q,D) is P(Q|D) → Multiplication of probabilities → missing one term makes score = 0
 - Is there a better way to handle unseen terms?

Smoothing

- Problem: Zero frequency
- Solution: "Smooth" terms probability



Smoothing

- Document texts are a sample from the language model
- Missing words should not have zero probability of occurring
- A missing term is possible (even though it didn't occur)
 - but no more likely than would be expected by chance in the collection.
- A technique for estimating probabilities for missing (or unseen) words
 - Overcomes data-sparsity problem
 - lower (or discount) the probability estimates for words that are seen in the document text
 - assign that "left-over" probability to the estimates for the words that are not seen in the text (and also on the seen ones)

Mixture Model

$$P(t|d) = \lambda P(t|M_d) + (1 - \lambda)P(t|M_c)$$

- Mixes the probability from the document with the general collection frequency of the word.
- Estimate for <u>unseen</u> words is $(1-\lambda) P(t|M_c)$
 - Based on collection language model (background LM)
 - $P(t|M_c)$ is the probability for query word i in the collection language model for collection C (background probability)
 - λ is a parameter controlling probability for unseen words
- Estimate for <u>observed words</u> is

CF

$$\lambda P(t|M_c) + (1-\lambda) P(t|M_c)$$

Jelinek-Mercer Smoothing

$$P(t|d) = \lambda P(t|M_{c}) + (1 - \lambda)P(t|M_{c})$$

- High value of λ: "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ: more disjunctive, suitable for long queries
- Correctly setting λ is important for good performance.
- Final Ranking function:

$$P(q|M_d) \propto \prod_{1 \le k \le |q|} \left(\lambda \cdot P(t_k|M_d) + (1-\lambda) \cdot P(t_k|M_c)\right)$$

Example

- Collection: d_1 and d_2
- d₁: "Jackson was one of the most talented entertainers of all time"
- d₂: "Michael Jackson anointed himself King of Pop"
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$
- Ranking: $d_2 > d_1$

Notes on Query Likelihood Model

- It has similar effectiveness to BM25
- With more sophisticated techniques, it outperforms BM25
 - Topic models
- There are several alternative smoothing techniques
 - That was just an example

n-grams LMs

- Unigram language model
 - probability distribution over the words in a language
 - associates a probability of occurrence with every word
 - generation of text consists of pulling words out of a "bucket" according to the probability distribution and replacing them

- N-gram language model
 - some applications use bigram and trigram language models where probabilities depend on previous words
 - predicts a word based on the previous n-1 words

LMs for IR: 3 possibilities

- Probability of generating the query text from a document language model
- Probability of generating the document text from a query language model
- Comparing the language models representing the query and document topics

Summary

- Three ways to model IR
- VSM
 How query vector aligns with document vector?
- Probabilistic Model
 What is the relevance probability of document D given query Q?
- LM
 How likely is it possible to observe/generate sequence
 of terms Q in a language model of document D?

Resources

- Text book 1: Intro to IR, Chapter 12
- Text book 2: IR in Practice, Chapter 7.2, 7.3
- Readings:
 - Robertson, Stephen E., et al.
 "Okapi at TREC-3."
 NIST Special Publication 109 (1995): 109.
 - J. Ponte and W. B. Croft.
 A language modeling approach to information retrieval.
 In Proceedings on the 21st annual international ACM SIGIR conference, pages 275–281, 1998
 https://dl.acm.org/doi/10.1145/290941.291008

